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Using Canadian administrative data, this paper presents evidence of revenue

and productivity spillovers across firms at fine spatial scales. Accounting for the

endogenous sorting of firms across space, we estimate an average elasticity of firm

revenue and productivity with respect to the average quality of other firms within

75 meters of 0.024. We find scant evidence that the average firm benefits from

being surrounded by a greater amount of economic activity at this spatial scale.

Sorting of higher quality firms into more productive locations and higher average

and aggregate quality peer groups is salient in the data.

Considerable evidence quantifies the scale and nature of agglomeration economies at the regional

and local labor market levels. Greenstone, Hornbeck and Moretti (2010), Ellison, Glaeser and Kerr

(2010), Bloom, Schankerman and Reenen (2013), Faggio, Silva and Strange (2017), Hanlon and

Miscio (2017), and others all provide evidence that firm and worker productivity are increasing in the

prevalence of nearby firms to which they are connected, with connectivity measured through input-

output relationships, patent citations or occupational similarity. There is also extensive evidence

that firms and workers in larger cities are more productive on average, with about half of city size

wage premia driven by greater returns to work experience in larger cities (Baum-Snow and Pavan,

2012; De la Roca and Puga, 2017). The natural implication is that city scale enhances firm and

worker productivity, likely in part through spillovers that operate between firms and workers at

microgeographic spatial scales. Despite this extensive evidence for broad regions, little empirical

evidence exists about the magnitude and composition of productivity spillovers at the very local level

within cities. Evidence in the literature at microgeographic spatial scales is primarily descriptive

(Duranton and Overman, 2005; Kerr and Kominers, 2015) or specific to certain narrowly defined

industries (Rosenthal and Strange, 2003; Arzaghi and Henderson, 2008).
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Using panel data on high-skilled services firms in three large Canadian cities, this paper provides

the first causal estimates of revenue and productivity spillovers at fine spatial scales for a broad set

of firms, quantifies the underlying mechanisms driving these spillovers, and characterizes sorting

patterns of firms across peer groups and locations. We find strong evidence of revenue and produc-

tivity spillovers that operate between firms within 75 meter radius peer group areas. We estimate

an average elasticity of firm revenue and productivity to the average quality of other firms within

75 meters of 0.024, measuring quality as static firm-specific components of these outcomes. This

estimate indicates that going from the 10th to 90th percentile of peer groups in our data increases

revenue by 7 percent. Conditional on these linear-in-means type spillovers, we find scant evidence

that the average firm benefits from being surrounded by a greater amount of economic activity at

spatial scales smaller than 500 meter radius areas. Linear-in-means spillovers are found to be very

local in nature. Tests for mediation of spillovers through various industry connections suggest that

learning or knowledge transfer between nearby firms is the primary mechanism driving spillovers

at microgeographic spatial scales. In particular, we find greater spillovers to firms operating in

industries that typically hire workers from peers’ industries and to firms that have more peers in

2-digit industries other than their own. Moreover, about two-thirds of linear-in-means spillovers are

estimated to accrue from firms in the top tercile of the local firm quality distribution.

We see extensive evidence of non-random sorting of firms across peer groups and locations. Specif-

ically, using estimates of firm quality, we show that higher quality firms tend to be located in peer

groups of greater average and aggregate quality. Locations with better fundamentals also attract

higher quality firms on average. Each of these patterns is more pronounced for above median qual-

ity firms. Externalities that increase in levels with both own firm quality and average peer quality

incentivize the non-random sorting of larger and higher quality firms into better peer groups and

locations. A positive equilibrium relationship between average and aggregate peer group quality en-

sues. Because the spillover process is linear-in-means, however, there are only small aggregate gains

associated with the observed peer group composition relative to a random allocation of firms across

locations. Absent consideration of potential general equilibrium effects and assuming homogeneous

treatment effects, counterfactual allocations that randomly assign firms to peer groups reduce ag-

gregate firm revenue by 0.27-0.74 percent through reductions in linear-in-means type spillovers,

mostly because the highest quality firms experience smaller spillovers in this environment.

The use of restricted access administrative tax data on the universe of firms in Canada is central

to this analysis. We use information on sales, inputs, factor prices, and postal codes for over 55,000

firms in more than 3,500 peer group locations for each year 2001-2012. We focus on the densest
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areas in Montreal, Toronto, and Vancouver, where postal codes are less than 75 meters in radius.

As in De Loecker (2011), reasonable assumptions about the data generating process for revenue

that accommodate variation in factor intensity and market power across sectors allow us to recover

estimates of total factor productivity (TFP) in addition to revenue spillovers. We find that sizes

and attributes of TFP and revenue spillovers are not statistically different.

Our empirical analysis adopts and extends a common specification in the peer effects literature

into the context of interactions between firms, a context that has not been considered before in the

literature in this way. In our empirical model, a firm’s log revenue depends on a fixed firm-specific

component and a weighted aggregate of this object for other firms in the peer group conditional

on local area-year and industry-year fixed effects. Our key parameter of interest is the coefficient

on this peer group aggregate. Arcidiacono et al. (2012) (AFGK) show how to estimate peer effects

with panel data in analogous environments in which children may sort across classrooms on fixed

unobserved attributes. We extend their setup to distinguish between the relative importance of

aggregate versus linear-in-means type spillovers and to assess the relative importance of different

types of industry connectivity weights. Through specification of the weights that aggregate peer

attributes, we can measure each of these types of spillovers. Extension of the AFGK model to

estimate the impacts of multiple types of spillovers simultaneously facilitates this analysis. Such

“horse race” type specifications have not been explored much in the peer effects literature but are

essential to recovering these important insights.1

Our fundamental source of identifying variation comes from changes in the composition of firms

over time within small areas. We use this sort of variation to separately identify spillovers from

location fundamentals or “contextual effects” of neighborhoods. In addition to selection on time-

invariant unobserved attributes, one may be additionally concerned that firm location choices may

depend on localized productivity, infrastructure, or worker amenity shocks. If neighborhoods with

improving business environments attract higher quality new arrivals and those with deteriorating

business environments see departures of higher quality firms, our spillover estimates would be over-

stated. On the other hand, if deaths of low quality firms disproportionately occur in poor business

environments, our estimates would be understated. As examples of such neighborhood attributes

that may matter, a refurbished road, a new transit station, or upgraded internet service may both

promote improved outcomes for existing firms nearby and draw in new more productive firms. As

such, the main threat to identification is that the quality of arriving or departing firms may be

correlated with unobserved trends in neighborhood fundamentals.

1Conley et al. (2015) and Liu, Patacchini and Zenou (2014), which estimate spillover parameters in analyses of peer effects
on studying effort and participation in school sport activities, are exceptions.
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To account for the possibility that firms select locations in a way that is correlated with such

location-specific shocks, our primary identification strategy takes advantage of the spatial granu-

larity in our data and includes 500 meter radius area fixed effects interacted with year. Identifying

variation comes from a combination of cross-sectional differences in firm composition in nearby

75 meter radius regions and differential changes in firm composition over time in these same peer

groups when compared within larger 500 meter radius regions. The inclusion of neighborhood-year

fixed effects coupled with changes over time in firm composition within peer groups allows us to

identify peer effects separately from changes in location fundamentals. Controlling for firm fixed

effects fully accounts for sorting across peer groups and locations on levels of firm quality.

The existence of frictions in commercial real estate markets in the central business district areas

of large cities and our focus on high skilled service industries support our identification strategy. In

order to hedge against business cycle risk, landlords typically rent out space on a rolling basis with

5-10 year commercial leases (Rosenthal, Strange and Urrego, 2021), generating smooth variation

in tenant turnover and making it difficult for firms to coordinate on location. As a result, there

are typically few options available for new commercial space within a 500 meter radius area in

any given year. Therefore, the opportunity for firms to sort on changes in fundamentals at small

spatial scales is very limited after controlling for neighborhood-year fixed effects. Bayer, Ross and

Topa (2008) employ a similar strategy in the residential housing market context to quantify the

extent to which neighbors provide each other with job referrals. Data from dense locations provides

identifying variation while simultaneously making it unlikely that changes in firm location choices

could be correlated with annual shocks to small area fundamentals. We perform a number of

post-estimation identification checks using our estimates of firm quality. Among other things, we

show that firm revenue residuals are not correlated with various attributes of future or past peer

quality that could reflect trends in location fundamentals that operate at spatial scales smaller than

500 meter radius areas or selective migration. Our focus on high-skilled services that are traded

beyond local neighborhoods reduces the possibility that very local shocks to demand conditions and

associated changes in local output prices at spatial scales smaller than a 500 meter radius area may

be driving results. Robustness checks that use model structure to account for endogenous price

responses corroborate our more reduced form estimates.

One key goal of the analysis is to distinguish between linear-in-means and aggregate forms of

spillovers. This distinction is important, as greater aggregate gains are typically available through

the internalization of agglomeration type spillovers relative to the internalization of linear-in-means

type spillovers. Many urban economic geography models that incorporate local agglomeration, from
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Fujita and Ogawa (1982) to Ahlfeldt et al. (2015), abstract away from firm heterogeneity. Instead,

they consider aggregate production functions for (implicitly) identical firms with constant returns

to scale production. Rather than indexing TFP by firm, TFP is indexed by location and is typically

an increasing function of nearby employment. This assumption about the form of agglomeration

economies shapes a related empirical literature that focuses on finding scale effects using aggregate

rather than firm level data. In contrast, the peer effects literature focuses primarily on estimating

linear-in-means type spillovers between individuals and does not consider aggregate type spillovers

(e.g., Guryan, Kroft and Notowidigdo, 2009; Cornelissen, Dustmann and Schonberg, 2017). As

mean and aggregate peer firm quality are positively correlated in our context, credible estimates of

each type of spillover requires considering both simultaneously in estimation. Otherwise, it is easy to

confuse one type of spillover for the other. We hope our evidence on the relative importance of linear-

in-means type spillovers sparks innovation in urban economic geography modeling to accommodate

such essential firm heterogeneity.

At first blush, it might appear that our evidence that linear-in-means type spillovers dominate

simple aggregation (agglomeration) spillovers is at odds with observed productivity and wage premia

that are associated with city size. However, coupled with our evidence that higher quality firms

experience larger spillovers in dollar terms from peer groups of the same quality than do lower quality

firms, our baseline results indicate an important interaction between sorting and firm externalities

that generates aggregate increasing returns at the city level. That is, the existence of larger and

more productive firms in larger cities itself can generate agglomeration economies. All of this is

consistent with Combes et al. (2012)’s evidence that static firm TFP distributions have higher means

and more right dilation in larger cities. The “Plant Size-Place Effect” of larger firms in larger cities

(Manning, 2009) also means there will be larger firm-to-firm spillovers in larger cities, resulting in

higher aggregate productivity. This is the firm-level counterpart to Baum-Snow and Pavan (2012)

and De la Roca and Puga (2017)’s evidence that workers’ returns to experience are greater in larger

cities, and that this profile is increasing in worker ability.

Methodologically, our investigation is similar to a number of papers in the peer effects literature.

Perhaps most closely related, Cornelissen, Dustmann and Schonberg (2017) formulate a similar

empirical model to ours, in which a worker’s wage depends in part on spillovers from components

of coworkers’ wages that are fixed over time. Using administrative data from the Munich region in

Germany, they estimate wage elasticities to averages of their peers amongst those working routine

tasks within firms of about 0.05. In contrast to our results, they find smaller spillovers for more

skilled occupations, indicating a very different process for human capital spillovers within than
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between firms. Our very localized evidence is in line with Moretti (2004), Kantor and Whalley

(2014), and Serafinelli (2019)’s more macro evidence on knowledge flows that operate between

firms.

We emphasize that while our analysis faces a number of identification challenges, we formulate

our empirical model such that it is not subject to the reflection problem. Given the consider-

able empirical challenges associated with credible identification of “endogenous effects”, in which a

firm’s outcome directly impacts peers’ outcomes (Manski, 1993; Angrist, 2014), we do not attempt

to isolate this component of our spillover estimates. Instead, we follow Gibbons, Overman and

Patacchini (2015)’s advice and focus on estimating spillovers from exogenous attributes of nearby

firms, as captured in their estimated fixed effects. Indeed, we think our setting is unlikely to gen-

erate much in the way of endogenous effects, as nearby firms in most industries have little reason

to try to coordinate on revenue. Moreover, as we discuss further below, our empirical model and

identification strategy are explicitly formulated to focus on the recovery of exogenous effects only.2

Absent any endogenous effects, our elasticity estimates can be interpreted as the ratio of the impact

of the aggregated exogenous attributes of peers to those of the firm’s own exogenous attributes.

This paper proceeds as follows. In Section I, we develop a theoretical framework that justifies

and interprets our use of revenue as the main outcome variable of interest. Section II describes our

empirical model, identification, and estimation. Section III describes the data and sample. Section

IV discusses the main results and identification checks. Section V presents counterfactuals oriented

toward isolating the impacts of firm sorting. Finally, section VI concludes.

I. Theoretical Framework

In this section, we lay out a conceptual framework that delivers empirical specifications describing

the operation of productivity spillovers between firms at microgeographic spatial scales. Beginning

with a standard profit maximization problem, we derive an estimation equation in which a firm’s

log revenue (sales) depends on its own fixed effect and a weighted aggregate of the fixed effects of

its peers. The key parameter of interest to be estimated is the elasticity of a firm’s log revenue with

respect to the weighted aggregate of its peers’ fixed effects. We show that under certain conditions

this parameter measures the average TFP spillover between firms within each peer group.

Our main estimation equation accommodates both perfectly and imperfectly competitive environ-

ments. If output prices are exogenous, time-differencing log revenue reveals that revenue innovations

induced by changes in peer group composition must be related to changes in firm TFP, with an

2Credible evidence of endogenous productivity spillovers has used supply chain network structure for identification, as in
Bazzi et al. (2017).
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adjustment for the variable input share. If output prices are endogenous and specific to the firm,

firm re-optimization in response to a positive TFP shock (and associated reduced marginal cost)

results in a reduced firm-specific output price. The magnitude of this endogenous price response

depends on both the size of the increase in TFP and the elasticity of demand faced by the firm. We

derive an additional adjustment to account for this endogenous price response, allowing us to recover

measures of TFP spillovers under imperfect competition as well with some modeling assumptions

and parameter calibration.

A. Basic Setup

Each year, each firm chooses its variable input quantity L conditional on location. Because of

commercial real estate market frictions, firms can change locations but cannot choose the exact

block b in which to locate, only the broader neighborhood B(b). Each block is associated with a

fixed amount of space. The only way a firm can adjust its space input is to move to a different

block. In the empirical work, we vary the size of the block by aggregating postal codes to areas of

75 to 250 meter radii within 500 meter radius broader neighborhoods.

The resulting short-run profit of firm i in block b and industry k at time t is

πi,b,k,t = pi,b,k,tAi,b,k,tL
θk
i,b,k,t − wB(b),k,tLi,b,k,t − Fi,b,k,t.

The key object of interest in this expression is TFP Ai,b,k,t, which is firm-year specific, and is influ-

enced by location fundamentals, industry, and fixed attributes of neighboring firms. The variable

input quantity is Li,b,k,t, which we think of mostly as labor. For small adjustments in Li,b,k,t, which

may occur year to year in response to changes in pi,b,k,t, Ai,b,k,t, and wB(b),k,t, the short-run produc-

tion technology is decreasing returns to scale. We allow the variable input share θk < 1 to differ

across industries. The input price wB(b),k,t is determined at a broader level of spatial aggregation

B(b) than the block and thus can be controlled for with local area and industry fixed effects inter-

acted with time. If firms are price takers, the output price pi,b,k,t = pB(b),k,t can also be controlled

for with local area and industry fixed effects interacted with time. Empirically, we focus on the

high-skilled services sector. As a result, output prices are likely to be determined at a broader level

of spatial aggregation than the block, with no local price competition. With market power, output

prices differ across firms as developed in Section I.D below and in Appendix A.A1. The fixed cost

Fi,b,k,t captures real estate and capital inputs. These are fixed in the short run but their implicit

prices can vary over time and space.
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Under perfect competition, firm log revenue in block b is

lnRi,b,k,t = ln pB(b),k,t + lnAi,b,k,t + θk lnL
∗
i,b,k,t,(1)

where L∗
i,b,k,t is the variable input demand function. Substitution of the input demand function into

equation (1) yields the following reduced form expression for log revenue:

lnRi,b,k,t =
θk

1− θk
ln θk +

1

1− θk
ln pB(b),k,t +

1

1− θk
lnAi,b,k,t −

θk
1− θk

lnwB(b),k,t.(2)

The structural responses of the variable factor input to TFP and output price shocks are identical

to those for revenue shown in equation (2).

The goal of the empirical work is to isolate revenue and productivity spillovers between firms from

variation in peer composition and in firms’ own log revenue or variable inputs. Doing so requires

holding constant location-specific attributes of wages and output prices, which we control for with

various fixed effects and adjustments described below. Conditional on output prices and wages,

equation (2) indicates the extent to which shocks to log revenue that spill over from nearby firms

fully reflect log TFP spillovers between firms. With a variable input share of 0.7, an observed 10

percent change in revenue would reflect a 3 percent change in TFP conditional on the output price

and variable input cost.

B. TFP Spillovers

To complete the structural representation of our estimation equation, we specify the process

through which we conceptualize TFP propagates between nearby firms. We allow firm i’s TFP in

year t to depend on a firm-specific component that is fixed over time αA
i , spillovers from a weighted

aggregate of this same object in all other firms j in block b at time t, and area-industry-time fixed

effects. Put together, we have the following data generating process for firm i’s TFP at time t:

lnAi,b,k,t = αA
i + ϕA

B(b),k,t + γA

 ∑
j∈Mb,t,̸=i

ωij(Mb,t)α
A
j

+ εAi,b,k,t.(3)

γA is the key object in this equation that we aim to estimate. It denotes the elasticity of firm i’s TFP

with respect to an aggregation of the firm-specific component of TFP that is fixed over time across

other firms in firm i’s peer group. Mb,t is the set of firms in peer group location b in year t. Weights

ωij(Mb,t) are equal across peers and sum to one in the “linear-in-means” (LIM) specifications and

sum to |Mb,t| − 1 in “agglomeration” (Agg) specifications. Local area-industry-year fixed effects
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ϕA
B(b),k,t capture a combination of location fundamentals and industry level TFP shocks.3

We follow much of the literature in conceptualizing firm quality αA
i as being a fixed firm-specific

component of TFP. We model spillovers to depend on aggregations of αA
j only, with the idea that

immutable firm attributes like management expertise and competence are more likely to influence

nearby firms than transitory TFP shocks would. To the extent that TFP growth rates differ

systematically across firms within local area, industry, and year fixed effects ϕA
B(b),k,t, such growth

rates will be positively correlated with average firm TFP. Even if higher firm quality promotes more

rapid TFP growth, our specification will still attribute greater firm quality to more rapidly growing

firms.4

In order to distinguish between mechanisms driving spillovers at a microgeographic scale, some

of our empirical work jointly estimates linear-in-means and agglomeration type spillovers. In these

cases, equation (3) becomes

lnAi,b,k,t = αA
i + ϕA

B(b),k,t + γA1

 ∑
j∈Mb,t, ̸=i

ω1
ij(Mb,t)α

A
j

+ γA2

 ∑
j∈Mb,t, ̸=i

ω2
ij(Mb,t)α

A
j

+ εAi,b,k,t.

All of the theoretical development in this section extends to such horse race model specifications.5

C. Structural Interpretation of Revenue Spillovers

The primary specification of our empirical model relates an aggregation of peers’ fixed components

of log revenue to a firm’s own log revenue in year t, taking the same form as in equation (3). Our

baseline estimation equation takes the following form, closely following Arcidiacono et al. (2012):

lnRi,b,k,t = αR
i + ϕR

B(b),k,t + γR

 ∑
j∈Mb,t,̸=i

ωij(Mb,t)α
R
j

+ εRi,b,k,t.(4)

The framework in Sections I.A and I.B shows how to assign structural interpretations to each

empirical model parameter in equation (4) and clarifies the conditions under which the reduced

form parameter γR identifies the structural parameter γA. Inserting equation (3) into equation (2)

delivers the structural interpretation of each parameter in equation (4).

We first consider the interpretation of local area-industry-year fixed effects ϕR
B(b),k,t. Once these

3We conceptualize no role for endogenous effects, as TFP is unlikely to be chosen strategically in response to peers’ choices.
4Such dynamics are more relevant for young firms, which tend to grow fastest. Firms in their first 5 years of existence make

up 25% of our estimation sample.
5For computational reasons, we limit spillover comparisons to be between only two different peer group compositions at a

time.
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are understood, it is more straightforward to see what firm-specific factors remain. The primary

empirical specification uses combinations of 500 meter radius area fixed effects, year fixed effects, and

2-digit industry fixed effects to control for contextual effects ϕR
B(b),k,t. Under perfect competition,

the structural interpretation of the fixed effects in equation (4) is

ϕR
B(b),k,t =

θk
1− θk

ln θk +
1

1− θk
ln pB(b),k,t −

θk
1− θk

lnwB(b),k,t +
1

1− θk
ϕA
B(b),k,t.

These fixed effects capture location and industry fundamentals, spatial variation in variable input

prices, and industry-specific output demand conditions.

The remaining terms in equation (4) can be simplified with a rescaling of the structural fixed

effect αA
i . The relationship between the remaining terms in the reduced form estimation equation

and the structural equation is:

αR
i + γR

∑
j∈Mb,t, ̸=i

[
ωij(Mb,t)α

R
j

]
+ εRi,b,k,t =

1

1− θk(i)
[αA

i + γA
∑

j∈Mb,t,̸=i

[
ωij(Mb,t)α

A
j

]
+ εAi,b,k,t].

Setting the firm-specific fixed effect αR
i equal to αA

i
1

1−θk(i)
, we can see that revenue spillovers γR

directly measure TFP spillovers γA if all firms in firm i’s peer group have the same variable input

share. In the perfect competition case, the theory suggests that using (1 − θk(i)) lnRi,b,k,t as an

outcome instead of lnRi,b,k,t allows for recovery of the structural parameter of interest γA if other

firms in firm i’s peer group have different variable input shares. In the following subsection, we

develop this idea further to additionally allow for imperfect competition.

As they have the same structural relationships with TFP, we use log employment and log total

payroll as alternative outcome variables to corroborate the log revenue results. Payroll can be

viewed as a quality adjusted version of the labor input.

D. Accommodating Imperfect Competition

To accommodate imperfect competition, we conceptualize an environment in which each firm in

industry k has the same markup over marginal cost because it faces the same demand elasticity

for its product ηk, in addition to having the same variable input share θk. While various model-

ing frameworks can deliver common markups, in Appendix A.A1 we derive it from the setup in

De Loecker (2011), in which firms are monopolistically competitive and consumers have constant

elasticity of substitution preferences over firm-specific varieties in each industry. Pass-through from

TFP to revenue depends on the output demand elasticities faced by firms. As demand becomes

more elastic, markups decline and the pass-through from TFP shocks to revenue gets stronger. In
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particular, the structural revenue equation, analogous to equation (2), becomes

(5) lnRi,b,k,t =
1 + ηk

ηk(1− θk)− θk
lnAi,b,k,t −

θk(1 + ηk)

ηk(1− θk)− θk
lnwB(b),k,t + ξk,t + ei,b,k,t,

where the structural interpretations of ξk,t and ei,b,k,t are laid out in Appendix A.A1. As demand

gets more elastic and firms in industry k lose market power, 1+ηk
ηk(1−θk)−θk

increases, converging toward

1
1−θk

and the perfect competition case seen in equation (2). The structural equation for the variable

input lnLi,b,k,t has the same coefficient on lnAi,b,k,t.

Substituting for lnAi,b,k,t in equation (5) using equation (3) and comparing the structural revenue

equation with our reduced form estimation equation (4), one can see that the log revenue spillover

parameter γR is equal to γA only if all firms within each peer group have the same variable input

share and output demand elasticity. This observation reflects one advantage of focusing on high-

skilled services firms only, as their variable input shares and market power are likely to be similar

across firms.

Under heterogeneous output demand elasticity and variable input shares within peer groups, we

recover estimates of TFP spillovers γA under the data generating process described by equation

(5). In particular, we show in Appendix A.A2 that using log revenue divided by 1+ηk
ηk(1−θk)−θk

as the

dependent variable makes the spillover parameter equal to γA. We explain in Appendix A.A3 how

we measure θk and ηk in the data.

Most of our empirical analysis uses unadjusted log revenue as an outcome. As resulting peer

effect estimates can incorporate price responses, they capture something closer to “revenue TFP”

rather than “quantity TFP” spillovers. While log revenue based spillover estimates are reduced

form in nature, we see a number of advantages to using this as our primary outcome. As it is

a required reporting line for corporations, revenue is measured accurately and consistently across

firms. Moreover, revenue TFP spillovers are of interest in their own right. As input demand

responds to both TFP and output price shocks, log revenue spillovers estimates are informative

about the economic geography of cities. They help explain the spatial concentration of employment

and economic activity observed in the data.

Accurate recovery of quantity TFP spillovers depends crucially on a combination of strong model-

ing assumptions and accurate measurement of variable input shares and output demand elasticities.

As it is impossible to know the true form of TFP spillovers, one key modeling assumption is that

TFP spillovers follow the data generating process described in equation (3). Moreover, TFP must

be backed out from strong assumptions about the demand system.6 Finally, even with firm level

6An alternative approach would be to estimate firm level TFP using procedures proposed in Ackerberg, Caves and Frazer
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balance sheet information, calibration of model parameters is subject to potentially serious mea-

surement error difficulties. Nevertheless, we show below that results using adjusted log revenue

(TFP) and unadjusted log revenue yield similar spillover estimates.

II. Empirical Implementation

Commensurate with the structural equations developed in the prior section, our baseline estima-

tion equation relates outcome yi,b,k,t of firm i in peer group (and location) b operating in industry

k at time t to peer outcomes using the following specification:

yi,b,k,t = ai + ϕB(b),k,t + γ
∑

j∈Mb,t,̸=i

ωij(Mb,t)aj + εi,b,k,t.(6)

We use log firm sales revenue as our primary outcome of interest. Robustness checks use adjusted

log revenue, log employment, and log total payroll as alternative outcomes.

In equation (6), ai is a firm fixed effect and ϕB(b),k,t is a combination of local area fixed effects,

year fixed effects, and industry fixed effects that captures access to local productive amenities, local

labor supply conditions, and secular trends in industry-specific productivity, wages and/or output

prices. While we explore various combinations of these fixed effects in the empirical work, in order

to maintain sample size our primary specification has separate location-year and industry-year fixed

effects.

The key predictor variable,
∑

j∈Mb,t,̸=i ωij(Mb,t)aj , is an aggregation of the fixed component of

the outcome variable in peer firms at time t, in which the weights are ωij(Mb,t) =
1

|Mb,t|−1 in the

linear-in-means specification and ωij(Mb,t) = 1 in the agglomeration specification. γ is the main

parameter of interest and captures the average total spillover effect of peers’ fixed attributes on the

outcome for firm i. Subject to normalization discussed below, firm fixed effects ai are economically

informative measures of firm quality. We use estimates of components of ai that are identified

to investigate the importance of sorting across peer groups on firm quality and to quantify the

extent to which such sorting has consequences for aggregate revenue. Section II.A discusses which

components of ai are identified under various scenarios.

The key spillover parameter γ can be interpreted in two useful ways. Most obviously, it is the

elasticity of y with respect to an aggregation of the fixed component of peers’ y. Perhaps more

informatively, γ can also be viewed as the ratio of the importance of fixed peer attributes to fixed

own attributes for generating variation in y. To see this, we imagine that each firm has a vector

(2015) or Gandhi, Navarro and Rivers (2020). However, because they use lagged input quantities as instruments and incorporate
price taking assumptions, these approaches are not well suited to isolating annual variation in firm TFP or market power,
especially for new arrivals to a location.
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of fixed unobserved exogenous attributes Xi that contribute to yi. These attributes are aggregated

by index weights β into the scalar X̃i. That is, ai = δoXiβ = δoX̃i, where δo is a common

scalar parameter describing the importance of a firm’s attribute index in contributing to its overall

quality. Much of the peer effects literature conceptualizes “exogenous effects” as the causal impacts

of exogenous peer attributes on outcomes (e.g., Gibbons, Overman and Patacchini, 2015). Rewriting

the peer effects term in equation (6) with the exogenous effects spillover parameter δp, we have

γ
∑

j∈Mb,t, ̸=i

ωij(Mb,t)aj = δp
∑

j∈Mb,t,̸=i

ωij(Mb,t)X̃j .

Substituting for X̃j from above, we have γ =
δp
δo
, which is equivalent to our second interpretation.

Absent endogenous effects, fixed peer attributes are 100γ percent as important as a firm’s own fixed

attributes in determining the outcome y.7

A. Measuring Firm Quality

In this sub-section, we discuss identification of firm fixed effects under various specifications and

implications for the measurement of firm quality. It is informative to partition the firm fixed effects

into common and idiosyncratic components:

ai = ᾱ+ αi.

Under linear-in-means aggregation schemes in which
∑

j∈Mb,t,̸=i ωij(Mb,t) = 1, the common com-

ponent of the firm fixed effect factors out of the peer effects term as the constant γᾱ. ᾱ is thus

not separately identified from contextual effects ϕB(b),k,t under linear-in-means spillovers. As a

normalization, in linear-in-means models we allocate the full constant term ᾱ(γ + 1) to location-

industry-time fixed effects ϕB(b),k,t.

Empirical implementation of specifications in which
∑

j∈Mb,t,̸=i ωij(Mb,t) is not constant across

locations does allow for separate identification of ᾱ by using variation in peer group size if γ ̸= 0. In

these cases, we can separately identify ᾱ by including the sum of the weights as a separate control

7The addition of endogenous effects, in which yi,b,k,t depends structurally on yj,b,t,k, would make the analysis more com-
plicated. Several example models are discussed in the appendix of Arcidiacono et al. (2012). One relevant result is that
interpretation of γ changes to be close to the sum of exogenous and endogenous spillovers if firms react strategically to expec-
tations about (rather than actual) peer outcomes. In our empirical setting with heterogeneous firms operating in high-skilled
services, we think it is unlikely that firms set revenue, factor quantities, or unobserved time-varying contributors to these
outcomes strategically with their peers. Therefore, we interpret γ as capturing exogenous spillovers only.
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variable. That is, we can rewrite equation (6) as

yi,b,k,t = αi + ϕ̃B(b),k,t + γ
∑

j∈Mb,t,̸=i

[ωij(Mb,t)αj ] + σ[
∑

j∈Mb,t, ̸=i

ωij(Mb,t)] + εi,b,k,t,(7)

where ϕ̃B(b),k,t = ϕB(b),k,t + ᾱ and σ = γᾱ. From this equation, as long as there is variation in

the sum of the weights
∑

j∈Mb,t, ̸=i ωij(Mb,t) across peer groups, αi, ϕ̃B(b),k,t, γ, and σ can all be

separately identified. Therefore, ᾱ can also be separately identified as σ
γ as long as γ ̸= 0. In

the agglomeration specification in which
∑

j∈Mb,t,̸=i ωij(Mb,t) = |Mb,t| − 1, we thus include the

number of other firms in the peer group as a separate independent variable. Intuitively, the impact

of an additional low quality firm to a peer group raises aggregate peer group quality but reduces

mean peer group quality, with the spillover parameters scaled appropriately in estimation to match

this normalization. If the common portion of ai were not identified, it would be more difficult to

distinguish between these two types of spillovers, as additional firms could even reduce aggregate

peer quality in the agglomeration specification. This issue does not arise in the linear-in-means

specification, as peer group quality depends only on relative rather than absolute firm quality and

does not depend on peer group size.

B. Spillover Comparisons

We explore a number of specifications to make comparisons across different types of spillovers. For

our main analysis, we compare linear-in-means type spillovers with agglomeration type spillovers,

meaning we primarily consider estimation equations of the form

yi,b,k,t = αi + ϕ̈B(b),k,t +
γLIM

|Mb,t| − 1

∑
j∈Mb,t,̸=i

αj + γAgg

∑
j∈Mb,t,̸=i

αj + σ̈(|Mb,t| − 1) + εi,b,k,t,(8)

where ϕ̈B(b),k,t = ϕB(b),k,t + ᾱ(1 + γLIM) and σ̈ = ᾱγAgg. Such estimates allow us to determine the

extent to which linear-in-means versus agglomeration type spillovers dominate.8

To determine which types of firm-to-firm connections best facilitate spillovers, in subsequent anal-

yses we add the additional term βW
∑

j∈Mb,t,̸=i ω
W
ij (Mb,t) to equation (8). Here,

∑
j∈Mb,t,̸=i ω

W
ij (Mb,t)

is specified as the fraction of peers in the top tercile of some connectivity type W with firm i. There-

fore, βW is interpreted as the additional spillover a typical firm would receive by going from a peer

group composition without any close peer connections to one with the same mean and aggregate

8Appendix B.B2 discusses estimation of the more general specification in which γLIM
|Mb,t|−1

∑
j∈Mb,t ,̸=i αj is replaced by

γA
∑

j∈Mb,t ,̸=i ω
A
ijαj + σA

∑
j∈Mb,t, ̸=i ω

A
ij and γAgg

∑
j∈Mb,t ,̸=i αj + σ̈(|Mb,t| − 1) is replaced by γB

∑
j∈Mb,t ,̸=i ω

B
ijαj +

σB
∑

j∈Mb,t ,̸=i ω
B
ij .
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quality but in which all peers are in the top tercile of connections of type W to firm i. As is dis-

cussed further in Section III.C below, we consider bilateral input-output relationships, occupational

similarity, prevalence of labor flows between industries, and a simple indicator for being in the same

two-digit industry.

We similarly estimate heterogeneous spillover effects by firm quality. As with the industry con-

nections analysis, we focus on estimating the impact of having a higher fraction of peers in the top

tercile of the local 500 meter radius area’s α distribution. These results speak to the log super-

modularity assumption often used in theoretical modeling of cities with heterogeneous agents (e.g.

Davis and Dingel, 2019). As the inclusion of fixed effects ϕ̈B(b),k,t precludes us from estimating the

full distribution of α across all locations, looking within 500 meter radius areas is the furthest we

can go in evaluating spillover heterogeneity across firm quality while still controlling for changes in

location fundamentals.9

C. Estimation

Arcidiacono et al. (2012) proves that γ in the linear-in-means specification of equation (6) can be

identified by nonlinear least squares (NLLS) provided at least one peer group experiences variation

in group composition. If each peer group has at least one firm that has a non-missing outcome

for at least two periods, all firm fixed effects are identified jointly with γ. Moreover, this setup

accommodates missing data on outcomes as long as each firm is observed with non-missing data

at least once. In Appendix C, we extend this proof to accommodate arbitrary exogenous connec-

tivity weights linking firms. Evidence in the following section shows that there exists considerable

variation in peer group composition in our data, meaning that we can identify estimates of αi for

the vast majority of firms. As we show in Appendix C, the identification proof can be extended to

accommodate additional spillover terms as in equation (8) as long as there exists sufficient variation

in changes in peer group composition. We estimate empirical models using the iterative algorithm

proposed by Arcidiacono et al. (2012).10

If the weights do not sum to a constant, the nonlinear least square estimator for parameters in

9Rather than adding an additional term to the specification in equation (8), in unreported results we replace the agglomeration

terms in equation (8) with γW
∑

j∈Mb,t ,̸=i ω
W
ij (Mb,t)αj + σ̈W

∑
j∈Mb,t ,̸=i ω

W
ij (Mb,t). In this expression, ωW

ij (Mb,t) =
wW

ij

|Mb,t|−1
,

where wW
ij is an indicator for whether the firm i-to-j connection is above the median, whether firm i is in the top tercile of the

area’s α distribution, or whether firm j is in the top tercile of the area’s α distribution. We drop the agglomeration term in
this case since our estimates of γAgg are not significant. The same qualitative messages as from the simpler specifications ensue,
though parameter convergence is more fragile.

10As we demonstrate in Appendix C, consistency requires that one of two environments hold. Either (1) the number of peer
groups N goes to infinity for a fixed T and there is no serial correlation in the errors or (2) both N and T go to infinity, in which
case the errors can be serially correlated. Below we demonstrate with Monte Carlo simulations that the low serial correlation in
errors married with sufficiently large T leads to negligible biases in estimates in our empirical setting.
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our main estimation equation (7) solves

min
αi,ϕ̃B(b),k,t,σ,γ

∑
t

∑
i

yi,b,k,t − αi − ϕ̃B(b),k,t − σ
∑

j∈Mb,t ̸=i

ωij(Mb,t)− γ
∑

j∈Mb,t ̸=i

ωij(Mb,t)αj

2

.

Taking first-order conditions with respect to αi yields updating equations for each αi. Arcidiacono

et al. (2012) propose to solve for parameters using a two-step iterative algorithm. In the first step

of model estimation, the firm fixed effects are taken as given and estimates of γ, σ, and ϕ̃B(b),k,t are

obtained by a standard fixed effect estimator. In the second step, γ, σ, and ϕ̃B(b),k,t are taken as

given and new estimates of the firm fixed effects are obtained using first order conditions. After a

number of iterations, this procedure converges to the nonlinear least square solution. In our primary

specification, we initialize αi to be estimates from a regression of yi,b,k,t on firm, local area-year, and

2-digit industry-year fixed effects, assigning the constant to αi. In the linear-in-means specification,

σ is not separately identified and thus cannot be estimated. Estimation of specifications that include

both linear-in-means type spillovers and agglomeration type spillovers follows the same procedure,

though with a more complicated updating rule for αi. Appendix B details updating equations for

αi for all of the specifications we estimate. We use a symmetric wild bootstrap (MacKinnon, 2006)

clustered by 75 meter radius peer group areas b to calculate standard errors.11

D. Identification

Consistent identification of γ requires variation in the composition of firms within blocks that

is unrelated to time-varying unobservables driving outcomes. By using changes in peer group

composition for identification, this setup is not subject to the classic identification challenge faced

in much of the empirical agglomeration literature, that firms (or workers) systematically sort across

locations on their own fixed unobserved attributes. In our context, such sorting would occur if more

productive or high paying firms located in higher quality locations. For example, if more productive

firms are the high bidders for commercial real estate near train stations and highway interchanges,

there could be a correlation between firm and peer outcomes that is not causal but is instead driven

by this contextual natural advantage. By including firm fixed effects, this empirical setup controls

for such sorting on levels.

Our main empirical specifications include 500 meter radius area fixed effects interacted with

year as controls. The key identifying assumption is thus that variation in changes in peer group

composition within 500 meter radius areas is not related to very local trends in unobservables that

11Unclustered standard errors are typically about 40% smaller.
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drive firm outcomes. For example, one may be concerned with the possibility that certain types of

locations receive shocks that both attract better firms and directly impact incumbent firm outcomes.

That is, neighborhood trends in firm productivity, output demand, or labor supply conditions may

predict both changes in firm composition (the mix of αjs) and changes in the productivity of

incumbent firms (εi,k,b,t). Given that the key source of identifying variation in the empirical work

comes from firm entry to and exit from blocks, we must clean out any such unobservables that

predict both composition changes in peers’ fixed effects because of firm turnover and changes in

outcomes for incumbents.

One sufficient condition for clean identifying variation is sufficiently tight commercial real estate

markets within 500 meter radius areas such that firms cannot choose exact locations within these

small areas. As a result, spillover estimates that accrue from fixed attributes of neighboring firms are

isolated from the impacts of potentially correlated neighborhood fundamentals. Thin commercial

real estate markets put a constraint on the amount of information firms can act upon when deciding

which building into which to move. This is similar to the identification strategy employed in Bayer,

Ross and Topa (2008) for estimating the rate of job referrals across residential neighbors, though

unlike Bayer, Ross and Topa (2008), our analysis is not subject to sorting bias on levels within

small neighborhoods.

The use of panel data is central to our analysis. Without panel data, it would be impossible

to isolate each firm’s individual exogenous quality αi that is fixed over time. Moreover, panel

data is required to account for sorting across peer groups on unobserved firm characteristics. As

much of the peer effects literature has not had access to panel data, it has had a difficult time

separately identifying spillovers from unobserved agent attributes absent explicit randomization

into peer groups. As such, much of the peer effects literature is only able to look at settings in

which peer group assignment is conditionally random. Even in these cases, this literature has had

a difficult time estimating the full magnitudes of exogenous peer effects.

Panel data also allows us to implement a number of post-estimation identification checks that

validate our empirical strategy. These include demonstrating that errors are neither correlated with

shocks to peer group quality in future locations before moves in nor in past locations after moves

out. We also show more reduced form event study evidence that firms have better outcomes when

their peer group changes with the addition of high-quality firms
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III. Data and Descriptive Evidence

A. Data and Sample

The data set used for the analysis incorporates Canadian administrative tax records on firms and

workers. The main source is T2 Corporation Income Tax Return files for all incorporated firms

in Canada in each year 2001-2012. All corporations in Canada must file a T2 return every year,

even if there is no tax payable. The T2 files contain information on firm revenues, expenses, and

assets. Additional information on payroll and employment is derived from linked firm records on

employment remuneration (Form T4). We also observe anonymized six-character postal code iden-

tifiers for the location of each firm’s primary operations and a distance matrix for these anonymized

postal codes out to one kilometer. Canadian postal codes in the central areas of cities typically

cover blockfaces or individual buildings.

We keep all firm-years in the Montreal, Toronto and Vancouver census metropolitan areas with

evidence that the firm is operating. We focus on using information about sales of goods and services

(revenue), employment, and payroll as these are required reporting lines in the corporate tax filings.

We drop firms that cycle back and forth between postal codes, with missing location information,

or with no 4-digit industry information. We identify a firm’s entry and exit years as the first and

last years it has positive reported revenue, employment, or payroll. As the empirical setup admits

missing values on outcomes, we keep firm-years with missing information on any of these measures

in between entry and exit years. Because we only observe one postal code per firm, our primary

estimation sample only includes single-location firms. As firms are defined as tax reporting units,

many acquired firms and subsidiaries are kept in our data since they report as separate tax entities.

We perform robustness checks assigning multi-location firms to their headquarters locations.

Table 1 presents summary statistics on the firms in our data. Columns (1) and (2) show statistics

for firms in all industries and columns (3) and (4) show those for the 42% of firms that are in

high-skilled services (NAICS 5), the largest 1-digit sector by firm count. The next biggest sector

is recreation, accommodation and food services (NAICS 7). We elect not to include NAICS 7

firms because their demand conditions commonly vary at a microgeographic scale.12 We observe

approximately 181,500 single-location NAICS 5 firms operating in at least one year 2001-2012 in

Montreal, Toronto, and Vancouver. The typical NAICS 5 single-location firm is smaller than the

average single-location firm. It has lower revenue (CAD 300,000 per year) and fewer employees (4)

but greater payroll per worker (CAD 48,000). These single-location firms are sufficiently small that

12Many studies of agglomeration focus on manufacturing, which accounts for only about 10% of firms in our study area.
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their individual movement is unlikely to influence local factor prices.

Our estimation sample consists of small peer group areas within which we observe the population

of single-location NAICS 5 firms. To build these peer group areas, we first group postal codes into

regions in which the distance between the centroid of a nodal postal code and all other postal code

centroids is less than 75 meters. These peer group areas fully segment each of the three cities in

our data. We exclude all such areas that either have at least one member postal code with an area

that is greater than π752 sq meters (0.018 sq km) or have fewer than two high-skilled services firms

in any year 2001-2012. We iterate to additionally exclude peer groups that include firms for which

at least one contextual fixed effect required for estimation is not separately identified from the firm

fixed effect. The primary estimation sample is thus constructed jointly with the primary empirical

model specification, which has 500 meter radius area by year and 2-digit industry code by year fixed

effects. The estimation sample tends to include denser areas and grows in robustness specifications

with fewer fixed effects.

Figure 1 presents a map of postal codes and major streets in downtown Toronto. Rings of various

radii around the centroid of the focal postal code for one example peer group area are indicated.

This peer group area is centered immediately southwest of the corner of King and Yonge streets,

which is in the financial district. Five other postal codes have centroids that are within the indicated

75 meter radius circle, putting them inside the same peer group area. Inclusion of full postal codes

based on centroid location only means that most peer group areas have radii that are somewhat

greater than 75 meters. In particular, the average firm in our sample is in a peer group of radius

117 meters and 0.043 sq km.

The primary sample has approximately 56,000 firms and 282,000 firm-year observations. Of these

observations, 13,000 have missing revenue. The average firm in our sample has CAD 430,000 per

year in revenue and 4.8 employees, who earn an average of CAD 55,000 per year. These firms are

spread across 42,100 peer groups for an average peer group size of 6.7 firms. We cover about 30%

of single-location NAICS 5 firms in the three cities, with the exclusions due to firms being alone

in peer group areas and/or in postal codes that are too large. Indeed, the average single-location

NAICS 5 firm is in a postal code with a radius of 169 meters and is in a peer group area of 2.1

firms. The firms in our sample generate about 30% of aggregate NAICS 5 firm revenue in the three

cities.
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B. Peer Group Composition

Identification of peer effects using our empirical strategy requires both a panel data structure

and temporal variation in peer group composition. Firms appear in our primary sample for an

average of 6.2 years out of 12 years of data, with a standard deviation of 3.9. We observe half of

the firms in our primary sample for at least 6 years. Firms may operate in some years but not

contribute to the estimation sample due to the sample restrictions described above. Estimation

sample firms experience 1.4 75 meter radius peer group areas on average, with a standard deviation

of 0.7. However, the typical firm is not very mobile. Only 34% of firms in our sample experience

more than one peer group area in our data. When firms move, they move between 500 meter radius

areas 94 percent of the time.

Higher revenue firms sort into peer groups of both higher average and aggregate revenue. Figure

2 shows non-parametric relationships between average peer log revenue (Panel A) or aggregate peer

log revenue (Panel B) and firm log revenue. Above the median, there is strong positive sorting

on the mean log revenue and aggregate log revenue of peers. As can be inferred from comparing

Panels A and B, there is also a strong positive correlation between mean and aggregate peer log

revenue. Without accounting for both simultaneously in the empirical work, it is thus easy to

mistake linear-in-means type spillovers for aggregate type spillovers.13

Figure E1 provides a sense of the variation in log revenue and peer group composition in our

data. Importantly, it shows that the peer group size distribution is highly skewed to the right, with

the largest peer groups having about 150 members and the average firm exposed to 16 peers. As

a result, there is much greater dispersion in aggregate peer log revenue than in average peer log

revenue. The associated independent variation is needed to empirically distinguish between these

two types of spillovers.

C. Connectivity Weights

Ellison, Glaeser and Kerr (2010) and Faggio, Silva and Strange (2017) describe the extent to which

firms in manufacturing industries connected through input-output linkages, occupational similarity,

and/or patent citations coagglomerate. Part of our analysis evaluates the extent to which cross-firm

productivity spillovers within peer groups of firms in high-skilled services are mediated through these

same types of inter-industry connections. As in the coagglomeration studies, we explore the relative

13In Section V below, we revisit relationships like this after accounting for the component of revenue due to spillovers. We
will see, again, that firms positively sort on both average and aggregate peer quality. That is, α̂i is more highly correlated
with both 1

|Mb,t|−1

∑
j∈Mb,t ̸=i α̂j and

∑
j∈Mb,t ̸=i α̂j than would be the case if firms were allocated randomly into peer groups.

Relatedly, average and aggregate peer quality are positively correlated. Just as with log revenue, firms tend to assortatively
match into peer groups on αi when observed in the cross-section.
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importance of input-output linkages and occupational similarity for the magnitudes of spillovers.

In addition, we look at industry connections as defined by the prevalence of worker flows between

industries, as in Serafinelli (2019). Finally, as in Greenstone, Hornbeck and Moretti (2010), we

examine the extent to which being in the same 2-digit industry matters. We do not look at the

prevalence of patenting or patent citations because patenting is rare in high-skilled services. Our

connectivity weights analysis estimates the extent to which increasing the fraction of peers in the top

tercile of each bilateral weights distribution, calculated for our primary estimation sample, affects

firm outcomes. Additional details about connectivity weights can be found in Appendix D.

IV. Results

In this section, we present and discuss parameter estimates under various spillover specifications,

aggregation weights, and peer group definitions. Equation (6) with ωij =
1

|Mb,t|−1 is the estimation

equation for all linear-in-means estimates, delivering γ̂LIM. In this case, mean firm quality ᾱ is

not identified. Equation (7) with ωij = 1 is the estimation equation for agglomeration estimates,

delivering γ̂Agg. Horse races between linear-in-means and agglomeration aggregation schemes are

estimated using equation (8), delivering both γ̂LIM and γ̂Agg simultaneously. The agglomeration

and horse race models also deliver estimates of mean firm quality.

A. Main Estimates

Table 2 presents the main results of the paper. The first two columns show separate estimates of

γLIM and γAgg with log revenue as the outcome. We find a statistically significant estimate of 0.018

for γLIM but an insignificant estimate for γAgg that is close to zero. The third column presents these

parameters estimated jointly. The result is a slightly larger γLIM estimate of 0.024 and an estimate

for γAgg that remains close to zero, turning slightly negative. This pattern reflects both a positive

correlation between changes in mean and aggregate peer quality and the fact that agglomeration

spillovers at a 75 meter radius area spatial scale are very close to zero. Standard errors for γ̂LIM,

clustered by 75 meter radius peer group area, are near 0.009 in both columns (1) and (3).

We can interpret the linear-in-means results in two ways. First, an approximate doubling of

average peer quality leads to a 1.8 to 2.4 percent increase in firm revenue. As the standard deviation

in average peer quality is 1.1, this is also approximately the impact of increasing peer quality by

one standard deviation. Equivalently, this estimate can be interpreted as indicating that absent

endogenous effects, peers’ attributes are 1.8 to 2.4 percent as important as a firm’s own attributes

for determining revenue. The final row of Table 2 reports the implied difference in the fraction
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of revenue accounted for by spillovers in the 90th percentile firm relative to the 10th percentile

firm. This 90-10 gap of 5-7 percent shows a wide range of spillovers across firms depending on the

environment. Recall evidence in Figure 2 Panel A showing that high quality firms tend to colocate,

which is part of what generates this dispersion.

The near zero agglomeration spillover estimates should be viewed in the context of the inclusion

of 500 meter radius local area-year fixed effects. Our estimates cannot rule out the existence of

aggregate increasing returns at higher levels of spatial aggregation. Sharing of inputs provided

at high minimum efficient scales, sharing of output markets, and labor market pooling are all

likely to operate at spatial scales at or above 500 meter radius regions. As such, we interpret our

microgeographic scale results as primarily reflecting knowledge flows rather than these other forces.

Of the forces driving agglomeration economies, knowledge transfer may also be more likely to occur

as a function of average rather than aggregate peer group quality.

Results in columns (4)-(6) of Table 2 show analogous estimates using the more parsimonious

specification that excludes 500 meter radius-year fixed effects. Comparison of these estimates with

those in columns (1)-(3) indicate relationships between location fundamentals and peer group com-

position. This specification delivers a linear-in-means estimate of 0.029. The larger estimate in

column (4) than column (1) indicates that through composition shifts, peer groups tend to improve

in average quality in areas experiencing positive productivity trends and/or peer groups tend to

decline in average quality in areas experiencing negative productivity trends. The agglomeration

model in column (5) yields a statistically significant estimate of 0.0019, more than six times larger

than its counterpart in column (2). This indicates a positive correlation between trends in aggregate

peer group quality and location fundamentals. The horse race model in column (6) generates a γLIM

estimate of 0.021, which is statistically indistinguishable from our primary specification estimate of

0.024. The estimate of γAgg falls some to 0.0011 but is still well above the corresponding estimate

in column (3). Therefore, the composition bias primarily comes from higher αi firms crowding into

locations experiencing productivity growth or departing locations with productivity declines. That

is, natural advantage and aggregate peer quality are positively correlated at small spatial scales in a

way that is likely not causal. Recovery of credible estimates of γLIM thus requires controlling either

for neighborhood-year fixed effects or aggregate peer quality. Because peer groups tend to be larger

in places with better location fundamentals, even conditional on average peer quality, recovery of

credible estimates of γAgg requires controls for both location fundamentals and average peer quality.

Results in columns (7)-(9) of Table 2 are estimated with controls for 500 meter radius area-year

fixed effects but not industry-year fixed effects. These results are similar to the results from our
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main specification in columns (1)-(3). The conceptual interpretation based on the model in Section

I is that either there is not much heterogeneity across NAICS 5 industries in variable input shares

or market power or that there is not systematic sorting by industry across peer groups in a way

that is correlated with local productivity shocks.

The fully saturated specification with a triple interaction between 500 meter radius area, 2-digit

industry, and year fixed effects reduces the sample size by 38 percent and yields estimates of γLIM

and γAgg that are indistinguishable from our main estimates reported in column (3) (not reported).

We conclude that a specification with 500 meter radius area-year and industry-year fixed effects

strikes a good balance between maintaining sample size and facilitating strong identification. As

such, we maintain this specification throughout the remainder of our analysis.

Various statistics about estimated firm and peer quality distributions are listed near the bottom

of Table 2. Statistics about α̂i distributions and estimated peer group compositions are quite

stable across specifications. As such, we are confident in using this information to help evaluate

the prevalence of sorting on firm quality across peer group and location quality in counterfactual

experiments explored in Section V. For specifications that include agglomeration terms, mean firm

quality ᾱ can be calculated but is imprecisely estimated because γ̂Agg is near 0, commensurate with

our discussion of equation (8).

B. Identification Checks

Central to our identification strategy is that 500 meter radius area-year fixed effects must suc-

cessfully control for the component of trends in location fundamentals that is correlated with peer

group composition. Moreover, identification requires no selective migration of firms with positive

revenue shocks or trends to higher average quality peer groups conditional on fixed effects. To

evaluate the strengths of these conditions, we undertake exercises with the post-estimation errors

from our primary specification in Table 2 column (3). These exercises verify that the error term

is not correlated with various attributes of future or past peer quality that could reflect trends in

location fundamentals that operate at spatial scales smaller than 500 meter radius areas or selective

migration. Table 3 presents these results. All standard errors are calculated using a symmetric wild

bootstrap of post-estimation errors with 100 replications and peer group area level clustering.

The first two columns of Panel A report regressions of errors on estimated average peer quality

(means of peer estimated αj) one and two years in the future (column 1) or one and two years in

the past (column 2). These estimates are all less than one-fifth the magnitude of our main estimate

of γLIM and are not statistically significant. For the firms that do not move between periods t
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and t+ 1, these small magnitudes indicate that any potential bias from local neighborhood trends

in fundamentals that are correlated with changes in peer group composition are small. For firms

that do move, these estimates indicate that firms are not responding to positive (negative) shocks

or quality trends by moving to higher (lower) quality peer groups in a statistically significant way.

Evidence in columns (3) and (4) corroborate these observations by showing that the average qualities

of future peer group entrants and past peer group leavers are also not significantly related to the

error term.

Table 3 Panel B reports results from a similar set of exercises using only estimated errors for

firms that move across peer group locations between periods t and t+1. The first column shows no

statistically significant relationship between errors in period t (before the move) and the contem-

poraneous average peer group quality in the future location. The negative estimate indicates that

if anything movers receiving positive shocks before moving actually tend to move to locations with

lower average peer quality, obviating the potential identification concern that firms experiencing

positive shocks or trends tend to sort into better quality peer groups. Columns (2) and (3) show

smaller relationships between the error term in period t and the average qualities of firms entering

or departing to and from the future location in period t (before the firm arrives). This is evidence

that firms receiving positive shocks are not sorting into improving locations and that firms receiv-

ing negative shocks are not sorting into declining locations. In the same spirit, columns (4) and

(5) show no correlation between errors in period t + 1 (after the move) and the average quality of

new arrivals or departures in the previous location at time t + 1. Firms that experience positive

shocks or trends do not selectively migrate to higher quality or improving peer groups conditional

on fixed effects, nor do firms that experience negative shocks selectively migrate to lower quality or

deteriorating peer groups.14

Appendix C demonstrates that consistent estimation of peer effect parameters using our empirical

model requires either that the number of observations associated with each location tends to infinity

or that the error term exhibits no serial correlation or heteroskedasticity. However, the result in

Table 3 Panel A column (5) shows a moderate serial correlation in the error term of 0.27, which

may reflect trends in firm quality.

Monte Carlo simulations confirm that heteroskedasticity and serial correlation of the errors of

this magnitude hardly influence estimates of interest given the length of the panel. To carry out

this analysis, we parameterize heteroskedasticity as normally distributed across firms. Using post-

14While we find no evidence of sorting on changes, below we show strong evidence of sorting in the cross-section: higher
quality firms do tend to co-locate in peer groups. Such cross-sectional sorting is controlled for with firm fixed effects in the
empirical work.
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estimation data, we calculate the variance of the error term for each firm and fit it to a normal

distribution. Monte Carlo simulations sample from error distributions with this firm-level distribu-

tion of variances and a within-firm serial correlation of 0.27. Across 100 simulations, the resulting

average estimates of γLIM are 0.016 using the specification in Table 2 column (1) and 0.022 using

the specification in Table 2 column (3). Monte Carlo simulations that assume other forms of error

heteroskedasticity all yield implied estimates that are even closer to those reported in Table 2.

A series of exercises using data from years surrounding large shocks to average peer quality further

corroborate robustness of our estimates. We isolate events in which average peer quality declines

by more than the 10th or 25th percentiles or increases by more than the 75th or 90th percentiles of

the distribution of change in average peer quality across all firm-year observations in our primary

estimation sample. These are mean changes in average peer quality of −0.73, −0.43, 0.49, and 0.82,

respectively. Using the same post-estimation data set used to generate Table 3, we form a firm-event

time panel keeping only incumbent firms exposed to these large changes in average peer quality in

event time t. We run separate regressions of firm log revenue (residualized from the estimated fixed

effects) on average peer quality, aggregate peer quality, and the number of peers for each event time

t − 2 to t + 2 and event-type sub-sample. Table E1 reports the resulting estimates of γLIM, which

remain remarkably stable across these sub-samples and close to our main parameter estimate at

about 0.024.

We verify that the same qualitative result holds in the few clean events induced by the arrival of

new firms that exist in our data. We isolate the 93 events in which all incumbent firms in a peer

group experience a decline in average peer quality below the 10th percentile and the 25 events in

which all incumbent firms in a peer group experience an increase in average peer quality above the

90th percentile, along with no other changes in firm composition within two years prior and one

year after these shocks. While the restriction to such clean events results in small samples, event

study results in Figure E2 show statistical significance, post-event persistence in treatment effects

of expected signs, and a lack of differential pre-trends.

C. Alternative Outcomes

Inspired by model predictions in Section I, Table 4 presents results using three alternative out-

comes: adjusted log revenue, log employment, and log payroll. Moreover, we explore the extent to

which excluding multi-location firms influences the analysis.

The first column shows parameter estimates using log revenue adjusted for cross-industry het-

erogeneity in variable input shares and market power as the outcome. Specifically, the outcome
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is log revenue divided by 1+ηk
ηk(1−θk)−θk

, where θk is the variable input share and ηk is the output

demand elasticity faced by firms in industry k calculated as described in Appendix A.A3. Spillover

parameter estimates are quite similar to those reported in Table 2 column (3). Our estimate of γLIM

is only slightly smaller at 0.021 and the estimate of γAgg becomes more negative at -0.0012. This

is evidence that heterogeneous treatment effects for log revenue because of industry heterogeneity

are not seriously biasing our main coefficients of interest.

The model predicts that variable inputs should exhibit peer effects that are identical to those

for revenue. Employment is by far the largest component of variable cost and can be measured

consistently across firms in our data.15 We view payroll as a quality-adjusted measure of employment

(Fox and Smeets, 2011). Here we see linear-in-means estimates of about 0.016 for employment

and 0.013 for payroll with large standard errors. Though smaller than the revenue results, these

estimates are not statistically different. These slightly smaller estimates may reflect hiring and firing

frictions and the fact that these measures may not capture the full variation in hours worked, as

most of the employment we see is salaried. Moreover, employment and payroll may be understated

for smaller firms due to the unobserved labor provided by firm owners.

The final column of Table 4 examines robustness of our main estimates in Table 2 to using

a sample that includes multi-location firms. Here, we are constrained to assign all firm revenue

to the location reported on firm tax filings. This is a source of non-classical measurement error

in the dependent variable, in which we expect greater overstatements of average and aggregate

peer revenue in locations with better fundamentals and better peers, thereby biasing estimates

downwards. Nonetheless, we find only a slightly smaller γLIM spillover estimate of 0.019.

We note that some of the agglomeration literature examines relationships between firm level

outcomes and city or region level aggregates that are of a somewhat different functional form from

those examined in this paper. A common model specification might make firm log revenue or TFP

an increasing function of aggregate population, employment, or GDP in the city or more local region.

Our main agglomeration specification relates firm log revenue to something close to the sum of peer

log revenue rather than the log of the sum of peer revenue. Unfortunately, our empirical setup limits

us to linear aggregations of peer αj , precluding us from directly examining peer group aggregates

like ln[
∑

j∈Mb,t+1, ̸=i exp{αj}]. Attempts to estimate spillovers using firm revenue in dollars rather

than its log as the outcome presents estimator convergence challenges with very large standard

errors. The log revenue specification fits the data much better.

15While firms do report materials costs, this measure is small for NAICS 5 firms and exhibits wide heterogeneity across firms.
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D. Spatial Decay

Results in Table 5 provide evidence of rapid spatial decay, with negligible linear-in-means spillovers

operating beyond 75 meters. We demonstrate this result in two steps. First, we show that estimates

are similar to those reported in Table 2 when peer groups are defined over broader areas. We explain

how this stability is evidence of very local effects only. We then verify this claim by jointly estimating

spillovers with respect to average peer quality in concentric expanding rings around a firm using

post-estimation data, finding no evidence of impacts beyond 75 meters.

Table 5 Panel A reports estimates from specifications identical to those in Table 2 column (3),

except with peer group area radii extended to 150, 200, or 250 meters. We cannot go beyond

the 250 meter radius peer group area while maintaining separate identification of 500 meter radius

area-year fixed effects. To maintain comparison with the primary estimation sample, we consolidate

the peer groups used in Table 2 column (3) to create larger peer groups. Therefore, all samples

exclude firms in 75 meter radius peer group areas with one or more member postal code with an

area that is greater than π752 sq meters and 75 meter radius peer group areas with fewer than two

high-skilled services firms in any year 2001-2012. As for the primary estimation sample, we exclude

peer groups that include firms for which at least one contextual fixed effect required for estimation

is not separately identified from the firm fixed effect. As a result, slightly more observations are

excluded when using the broader peer group area definitions compared to the primary estimation

sample in column (1).

Estimates of γLIM show considerable stability across peer group sizes at 0.022-0.025. We interpret

this parameter stability as reflecting rapid spatial decay in peer effects, as parameters can be scaled

by the size of 75 meter radius peer group areas. To get a sense of magnitude, we note that the

average firm-year in our primary estimation sample is exposed to a 75 meter radius peer group area

of size of 0.04 sq km, a 150 meter radius peer group area 2.3 times as large, a 200 meter radius peer

group area 3.6 times as large, and a 250 meter radius peer group area 5.0 times as large (Table E2).

If firms are uniformly spatially distributed within peer group areas, estimates reported in Table 5

Panel A column (2) indicate that a 10 percent increase in average peer quality within a typical

75 meter radius peer group that is contained within a 150 meter radius peer group thus leads to

about a 0.253
2.3 = 0.11 percent increase in revenue on average, rather than the 0.24 percent estimated

within the smaller peer group areas. This suggests that most of the peer effect is generated from

firms within 75 meters. Agglomeration estimates are close to zero for all peer group definitions,

indicating that any agglomeration impacts that exist must operate at spatial scales at or above 500

meter radius areas.
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Panel B column (1) takes the post-estimation data from Panel A column (1) and jointly estimates

spillovers with respect to average peer quality in concentric expanding rings around a firm. Only

the innermost 75 meter radius is significant, with a coefficient of 0.022. Columns (2)-(4) report

analogous exercises using the same post-estimation data, though with only two peer group areas at

a time in the regression. In each case, only average peer quality within 75 meters has significant

coefficients, and each remains near our headline estimate of 0.024. Taken together, the evidence in

Table 5 suggests rapid spatial decay in linear-in-means spillovers.16 17

E. Industry Connections and Firm Quality

In this sub-section, we examine how spillovers depend on peer attributes. To do so, we begin

with the specification in Table 2 column (3) and add the fraction of peers with some attribute as an

additional regressor. We first examine impacts of having more peers in the same 2-digit industry

and in top terciles of input-output, occupational similarity, and worker flow industry relationships.

Details of how we construct these measures of firm connectedness are in Section III.C and Appendix

D. Results are reported in Table 6 columns (1)-(5).

Results reveal that industry relationships matter in addition to average peer quality. Results

in column (1) and column (2) show that having a greater fraction of peers in the same 2-digit

industry or in industries that are more closely connected upstream or downstream may result in

lower revenues, though these estimates are not significant. In contrast, results in columns (3) and

(4) show that having a greater fraction of peers with closer labor market connections or job task

compositions, as measured by occupational similarity or worker flows, results in higher revenues,

though again estimates are not significant. Examining all of these forces together in column (5), we

see that each individual estimate strengthens. Based on the estimates in column (5) and recognizing

that about one-third of the typical firm’s peers are in the top tercile of each distribution, the typical

firm loses an estimated 0.9 percent of revenue from having peers in the same industry (significant at

the 11 percent level) and 1.3 percent of revenue through close input-output relationships (significant

at the 16 percent level).18 However, it gains 1.5 percent of revenue from having peers in industries

with closer worker flow connections (significant at the 8 percent level). Addition of these regressors

does not influence the linear-in-means spillover estimate of 0.024 nor the conclusion that aggregate

type spillovers are negligible at this spatial scale. The associated lack of correlation between peer

16We note that the near zero estimates for peer group area definitions beyond 75 meters in 5 Panel B obviate the possibility
that spatial correlation in peer group quality within 500 meter radius areas could be driving results.

17Exercises similar to those in Table 5 Panel A using an expanded sample that includes all firms in the broader peer group
areas yields similar results except a smaller coefficient for the 250 meter radius peer group area. These alternative peer group
definitions include more low density neighborhoods and many small spatially isolated firms.

18About 20 percent of peers are in the same 2-digit industry for the average firm-year in our data.
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industry composition and average or aggregate peer quality is further evidence in support of well-

identified estimates in Table 2 column (3).

Results in column (6) of Table 6 show compelling evidence that about two-thirds of our estimated

linear-in-means spillover of 0.024 from Table 2 is driven by peers in the top tercile of the firm quality

distribution. When controlling for the fraction of peers in the top tercile of the local 500 meter

radius area’s firm quality distribution, the main linear-in-means estimate declines to 0.007.19 The

coefficient on the fraction of peers in the top tercile of the local area’s firm quality distribution is

0.086. The final column presents an analogous regression that instead controls for the fraction of

peers that are above median quality. The fact that the coefficient of 0.027 on this control is much

smaller than the corresponding coefficient in column (6) is evidence that linear-in-means spillovers

are convex in average peer firm quality. These results help rationalize the observation discussed

in the following section that higher quality firms exhibit stronger assortative matching into peer

groups than do lower quality firms.

F. Discussion

Given the small spatial scales involved and the focus on high-skilled service industries, we interpret

the evidence presented in this section primarily as reflecting knowledge transfer between workers

across firms. We come to this conclusion in part from process of elimination. The negative estimated

impact of a greater fraction of peers in industries with stronger input-output connections argues

against input sharing as being a central driver of results, as does the lack of local external economies

of scale. The lack of scale effects also argues against matching as a primary driver of estimates,

though we cannot rule out the possibility that the better access to information about good potential

hires, or reduced search frictions for workers and jobs because of proximity, may be driving some

of what we find. The fact that our data is dominated by firms producing services that trade over

long distances argues against price competition effects as a major driver of results.

Knowledge flows are also fully consistent with the patterns of estimates. The potential for knowl-

edge acquisition is greater from workers in different industries with similar worker requirements.

The positive estimated impacts of having more peers in industries with a greater prevalence of labor

flows and in industries with similar occupational structure point to knowledge flows as an impor-

tant mechanism driving the results. While knowledge acquisition may happen through input-output

connections, the associated relevant spatial scale is much broader than 75 meter radius areas. Our

19As most firms are not mobile across 500 meter radius areas, we cannot reliably compare firm quality estimates across these
areas without sacrificing strength of identification. We can use the same estimator as for our baseline horse race specification
because the first order condition in the updating rule for αi is not affected.
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results thus do not conflict with evidence in Bernard, Moxnes and Saito (2019) and Bazzi et al.

(2017) that firm productivity propagates through closer buyer-supplier relationships. Our finding

that peer quality in industries with which a firm’s workers are likely to have more interaction,

including those with stronger input-output relationships, contribute negatively to spillovers is evi-

dence that the most useful knowledge flows from nearby firms are likely to come in an undirected

way. The positive impacts of peer diversity for these types of firms is consistent with evidence

in Henderson, Kuncoro and Turner (1995) that firms in young innovative industries benefit from

cross-industry spillovers and contrasts with evidence for manufacturing in Greenstone, Hornbeck

and Moretti (2010). The fact that spillovers are greater from higher quality peers is also consistent

with such knowledge flows driving our results.

One key implication of our results is that while firms have some heterogeneity in incentives to

seek out peer groups of particular types, higher quality firms have greater incentives to sort into

locations with higher average quality peers. The following section demonstrates the existence of

such sorting and considers implications for aggregates.

V. Firm Sorting and Agglomeration Economies

In this section, we provide evidence that higher quality firms are more likely to have peers of both

higher average and aggregate quality. Moreover, the peer groups populated by higher quality firms

tend to be in more productive locations, with stronger sorting into these locations among above

median quality firms. We show that allocating firms randomly to peer groups generates weaker

relationships between own firm quality, average peer quality, and location fundamentals than exist

in equilibrium. The direct evidence documented here using estimated firm fixed effects reprises the

more indirect evidence of such sorting from Figure 2 and Table 2.

We then turn to an analysis of whether this sorting matters for aggregates. Because spillovers

primarily take a linear-in-means form, positive sorting into peer groups manifests itself in only small

aggregate impacts on firm outcomes. The aggregate revenue reduction from eliminating the positive

assortative matching into peer groups is 0.27 to 0.74 percent, with most coming from firms in the

top quintile of the firm quality distribution.

Most exercises carried out in this section use estimates of firm quality αi and spillovers γLIM,

γAgg, and σ̈ from our primary specification in Table 2 column (3). Because in this specification,

firm fixed effects αi are primarily identified within local areas due to limited firm mobility, most

analysis is carried out within these 500 meter radius areas. We use estimates from the specification

without local area-year fixed effects in Table 2 column (6) as a point of comparison to gain a sense
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of the magnitude of firm sorting across locations. To distinguish them from primary specification

estimates, we denote estimates from this alternative specification as α̂6
i , γ̂

6
LIM, γ̂6Agg, and

̂̈σ6
. α6

i

embodies an unknown combination of firm i’s quality and fundamentals of the location in which

firm i has spent the most time. Because only 32 percent of firms in our sample operate in more

than one location, we see below that the distribution of α̂6
i demeaned within 500 meter radius areas

is almost identical to the distribution of α̂i. We take peer group compositions from the 2006 cross-

section, as it is in the middle of the sample. For notational convenience, we drop t subscripts for

the purposes of our discussion in this section.

A. Relationships Between Average and Aggregate Peer Quality

One important observation in our data is that because of firm heterogeneity, it is possible to

confuse linear-in-means type spillovers for agglomeration type spillovers, as mean and aggregate

peer quality are positively correlated. Figure 3 shows evidence to this effect. It shows relation-

ships between average estimated peer quality 1
|Mb|−1

∑
j∈Mb ̸=i α̂j and either aggregate peer quality∑

j∈Mb ̸=i α̂j (left axis, solid line) or log aggregate peer revenue ln
∑

j∈Mb ̸=iRj (right axis, dashed

line). Both plots show mostly monotonic positive relationships, indicating that higher average qual-

ity peers tend to be in peer groups of greater aggregate quality as well. That is, in 2006 there

was positive sorting on levels of higher quality peers into larger and higher aggregate revenue peer

groups.

Empirical relationships seen in Figure 3 reprise evidence from comparing estimates of γAgg in

columns (2) and (3) of Table 2. After controlling for average peer quality, the estimated aggregate

peer quality elasticity changes in a statistically insignificant way from slightly positive to slightly

negative. A similar magnitude decline in γ̂Agg appears going from column (5) to column (6) in

Table 2, though in this case both estimates are positive. Both of these comparisons reflect positive

sorting of higher αj firms into higher aggregate quality peer groups when evaluated in changes.

The stronger sorting of higher quality firms into better aggregate quality peer groups in the 2006

cross-section relative to our empirical model estimates reported in Table 2 columns (2) and (3)

reflects the fact that our empirical setup controls for such sorting on levels. Our evidence is thus

that there is only a small amount of such sorting on changes remaining within 500 meter radius peer

group areas, to the point of statistical insignificance. The strong sorting on levels seen in Figure 3

highlights an important drawback of cross-sectional studies of agglomeration using firm level data.
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B. Assortative Matching into Peer Groups and Locations

Here we show evidence of a stronger relationship between firm and peer group quality than would

be expected by chance. Because of “exclusion bias” (Caeyers and Fafchamps, 2020), the relationship

between α̂i and average peer quality would be negative if firms were randomly assigned to peer

groups. To make informative comparisons that account for this bias, we carry out simulations

in which we randomly assign firms to peer groups while holding each firm’s estimated quality,

α̂i, constant. This exercise is akin to that in Duranton and Overman (2005), who examine how

much less localized firms in particular industries would be if allocated randomly to fixed locations

across UK postal codes. Comparing observed peer group composition to average simulated peer

group composition, we show that the equilibrium assignment of firms to peer groups involves a

stronger relationship between firm quality and average peer quality than would exist under random

assignment.

Comparisons of the relationships between α̂i and the difference between observed average peer

quality and counterfactual average peer quality under various scenarios allow us to characterize the

magnitude of sorting across peer groups and locations. Figure 4 depicts these relationships. The

solid black line shows the local linear polynomial relationship between α̂i and
1

|Mb|−1

∑
j∈Mb ̸=i α̂j−αi,

in which αi is the average of average peer quality across 100 simulations of randomly allocating firms

to peer groups within each area B(b). Both α̂i and
1

|Mb|−1

∑
j∈Mb ̸=i α̂j − αi have been demeaned

within areas B(b). That is, Figure 4 shows the relationship between firm quality and average

peer quality after accounting for exclusion bias. The fact that this line is upward-sloping means

that there is more sorting of higher quality firms into higher quality peer groups within local

areas B(b) than would exist through random allocation to peer groups. While this line is slightly

upward-sloping up to about α̂i = −1, it turns more steeply upward for higher firm quality. This

strengthening of positive sorting into peer groups with firm quality is consistent with our evidence on

the heterogeneity in linear-in-means spillovers as functions of α̂j . Magnitudes are also informative.

Because of sorting, the highest quality firms are in peer groups that are of 10-15 percent higher

average quality than are firms with α̂i = −1. Lower quality firms exhibit approximately random

sorting across peer groups. Because all analysis is performed within areas B(b), the slope of the

solid line represents a lower bound on the full magnitude of sorting across peer groups.

We next show that use of α̂6
i rather than α̂i to characterize sorting yields the same conclusions.

In particular, the long dashed line in Figure 4 shows the same relationship as the solid line but is

built using estimates of firm quality from Table 2 column (6) demeaned within 500 meter radius

areas B(b). As the solid and long dashed lines coincide, the two estimates of αi are very similar
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once area fixed effects are taken out. We take this as evidence that it is reasonable to use α̂6
i not

demeaned within B(b) to form comparisons that can be used to characterize sorting between areas.

The slope of the short dashed line in Figure 4 reflects a composite of firm sorting across locations

and peer groups. It is built analogously to the solid line but using α̂6
i (demeaned universally) rather

than α̂i (demeaned within local areas) as a basis. Because they are estimated without area fixed

effects, α̂6
i embody a combination of firm quality and location fundamentals. The fact that the

short dashed line is more steeply upward sloping than the other two lines is thus evidence that

beyond positive sorting into peer groups within areas B(b), firms additionally positively sort either

between areas on location fundamentals and/or across peer groups that are located in different areas

B(b). Such additional sorting is very strong, such that the average quality of peers and location

for the typical high quality firm at α̂6
i = 3.5 is over 50 percent greater than that at α̂6

i = −1. This

comes despite the fact that there is less dispersion in α̂6
i than α̂i, as seen in Table 2. Our estimates

exhibit a combination of large differences in location fundamentals that interact with sorting on

peer quality and strong sorting on peer quality across locations. Strong polarization in the sum of

location fundamentals and average firm quality across locations is apparent from our estimates.

The fact that average and aggregate peer group quality are positively correlated is one central

finding of this paper and merits some speculation about potential mechanisms that could generate

this pattern in equilibrium. With positive linear-in-means peer effects only, all firms have an incen-

tive to chase higher quality peers. This force would push peer groups with high quality firms to have

higher aggregate revenue and employment. Convexity in spillovers as a function of peer quality, as

seen in Table 6 column (6), only strengthens this incentive. Local rents would potentially be bid

up in these locations with the higher cost of doing business sustained with the larger spillovers.

Because higher quality firms also benefit more from high quality peers in dollar terms, there is

positive assortative matching of firms into peer groups. Finally, such agglomerations of larger high

quality peer groups will tend to locate in high local productivity “prime locations” (Ahlfeldt, Al-

bers and Behrens, 2020). There are some parallels to the conceptual observation in the local public

finance literature that locations with strong tax bases and high quality public goods are likely to

be crowded by those that benefit the most from such spillovers, as in the model in Calabrese, Epple

and Romano (2012).

C. Aggregate Impacts of Sorting

We now quantify the consequences of sorting for aggregate firm revenue. We use estimates of αi,

γLIM, and γAgg from Table 2 columns (3) and (6) to construct aggregate firm revenue under two
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different simulated random allocations of firms to peer groups. The first randomization procedure

holds the number and size of all peer groups constant whereas the second procedure only holds

the number of peer groups constant. Both procedures are consistent with the randomization car-

ried out for the analysis in the prior sub-section. While the consequences of linear-in-means type

spillovers are identical under the two randomization procedures, we find it instructive to consider

the implications of adding estimated aggregate type spillovers. We carry out randomization within

500 meter radius areas only for the column (3) estimates and implement both local and universal

randomization for the column (6) estimates.

Table 7 reports impacts of firm sorting across peer groups by aggregating revenue under the

two counterfactual scenarios discussed above and comparing it to total observed firm revenue.20

Entries in Table 7 show means and standard deviations of revenue impacts in percentage terms

from carrying out 100 simulations of counterfactual revenue given random allocation of firms to

peer groups. Results in the two columns under the header “Fixed Group Size” are generated

holding peer group size fixed and those under the header “Equal Group Size” are generated given

full randomization of firms across peer groups. In each column headed by LIM, aggregate firm

revenue under counterfactual allocation C is given by

lnY C
LIM = ln

[∑
i

exp

(
yi +

γ̂LIM

|MC
b(i)| − 1

∑
j∈MC

b(i)
,̸=i

α̂j −
γ̂LIM

|Mb(i)| − 1

∑
j∈Mb(i),̸=i

α̂j

)]
.

That is, we calculate aggregate revenue in the counterfactual environment in which actual peer

group quality is replaced by peer group quality determined under counterfactual allocation C. This

way of calculating impacts of sorting is not sensitive to the normalization of firm fixed effects,

as any normalization differences out. Comparison against aggregate revenue lnY = ln [
∑

i e
yi ]

shows how much aggregate revenue would be impacted if there were no sorting across locations.

In each column headed by LIM+AGG, counterfactual revenue is constructed with the addition of

γ̂Agg[
∑

j∈MC
b(i)

, ̸=i α̂j −
∑

j∈Mb(i), ̸=i α̂j ] + ̂̈σ[|MC
b(i)| − |Mb(i)|] within the exponential.

Results in the first row of Table 7 show that the sorting of higher quality firms into higher average

quality peer groups within local areas increases aggregate firm revenue by 0.27 percent through

linear-in-means effects. Randomly allocating firms across peer groups tends to make average peer

group size smaller for larger high αi firms and larger for smaller low αi firms. The result is larger

reductions in revenue due to spillovers for larger firms than corresponding increases for smaller

20This is a partial equilibrium analysis in the sense that it assumes reshuffling firms across peer groups only affects log revenue
through the peer effects mechanisms studied here.
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firms in dollar terms, netting out to a small aggregate effect. We emphasize that this 0.27 percent

result understates the true aggregate impact of sorting because it does not include sorting impacts

between different 500 meter radius areas, which we consider further in the context of our discussion

of results in the third row of Table 7 below. Because our estimate of γAgg is slightly negative, the

sum of the linear-in-means and agglomeration forces is greater and near 0, as seen in column (2),

though we discount this evidence given that our estimate of γAgg is not significant and is of opposite

sign than expected. As seen in Figure 4, firms with lower than average αi would tend to benefit

from imposing random sorting whereas the reverse is true for firms with greater than average αi.

In particular, aggregate revenue of firms in the bottom quintile of the quality distribution would

be 0.18 percent higher under randomized peer groups through linear-in-means forces whereas that

of firms in the top quintile would be 0.35 percent lower (not reported). If peer group size is also

randomized (columns 3 and 4), the linear-in-means effect is by construction essentially unchanged

but the overall agglomeration influence switches sign to reinforce the small negative linear-in-means

impact. This comes from the positive but insignificant estimated coefficient on the number of peerŝ̈σ.
The second row of Table 7 shows analogous objects but using parameter estimates from Table 2

column (6) while maintaining random allocation of firms to peer groups within 500 meter radius

areas. As γ̂6LIM is very close to γ̂LIM, entries in the first and third columns of Table 7 are very

similar in the first two rows. However, adding the impact of a positive γ̂6Agg now results in aggregate

revenue impacts of much greater magnitudes than in the first row. Incorporating the small aggregate

elasticity of γ̂6Agg = 0.0011 means that randomization across peer groups of fixed size reduces

aggregate revenue by 0.68 percent and that across peer groups of variable size reduces aggregate

revenue by 1.35 percent. These results give a sense of the upper bound of aggregate implications of

sorting within local areas.

The third row of Table 7 is constructed analogously to the second row, except that randomization

is carried out universally rather than within 500 meter radius areas only. Results thus show the

consequences of a combination of eliminating sorting between local areas and attributing location

fundamentals to firm fixed effects. Results in the third row are thus likely an upper bound on

the true aggregate impacts of sorting. Results in the first and third columns show that absent

sorting aggregate revenue would be 0.74 percent lower through reduction in linear-in-means type

spillovers. Including the estimated size of aggregate spillovers as well, this impact rises by about

1.5-1.8 additional percentage points.

As the aggregate impacts in Table 7 use our main specification, heterogeneous linear-in-means
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treatment effects are not accommodated. While we do not have the statistical power to precisely

estimate the relative magnitudes of spillovers imparted by higher quality firms, we have shown

evidence that firms in the top tercile of the quality distribution impart larger spillovers than do

lower quality firms. To provide a sense of how important this can be for aggregates, we carry

out the same counterfactual exercises using estimates from Table 6 column (6) instead, combining

the heterogeneous (“HET”) impact of the fraction of peers in the top tercile with the linear-in-

means component of the counterfactual. Reported in Table E3, we see the aggregate effects of the

LIM and HET effects in column (1) are 0.34 percent of aggregate firm revenue rather than 0.27

percent absent the accommodation of heterogeneous treatment effects. Other impacts under the

counterfactual scenarios we consider, also reported in Table E3, follow the same patterns as in Table

7, though with slightly larger magnitudes.

VI. Conclusions

Considerable evidence exists on the magnitude of aggregate increasing returns to scale at the

local labor market level. Yet little empirical evidence exists at microgeographic spatial scales.

Using estimates from a nonlinear fixed effects empirical model of peer effects, evidence in this paper

shows that firms benefit from being near higher quality peers, but that the nature of spillovers is

entirely through average rather than aggregate peer quality. In particular, the elasticity of firm

revenue and TFP with respect to the average quality of other firms within 75 meters is about 0.024.

This elasticity decays quickly with distance such that the average spillover beyond 75 meters is not

distinguishable from zero. When making comparisons within 500 meter radius regions, we find no

evidence that the average firm benefits from being surrounded by a greater amount of economic

activity within 75 meters. To the extent that scale matters, it is the amount of activity in regions

of 500 meter radius or larger that is mostly important, not the very local scale.

Using estimates of firm quality, we show that there is assortative matching of higher quality firms

into peer groups of greater average and aggregate quality. As externalities imparted by higher quality

firms are greater, there is an incentive for firms to locate in peer groups with higher quality peers.

This force may lead to the positive observed association between average and aggregate quality of

peer groups. Because spillovers are linear-in-means, there are mostly distributional consequences

associated with harmonizing firm composition across peer groups, with an associated reduction in

aggregate firm revenue of less than 1 percent.

Additional mechanisms beyond those documented in this paper are required to justify the magni-

tudes of metro level elasticities of TFP with respect to population, which are estimated to be in the
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0.03-0.05 range (Combes and Gobillon, 2015). One important aspect held constant in this study

is location fundamentals within 500 meter radius areas. As such, we provide evidence that a large

fraction of aggregate increasing returns to scale must operate at higher levels of aggregation. An

important question for future research is thus how microgeographic estimates like those reported

here aggregate up to the local labor market level. Our evidence highlights the importance of con-

sidering essential firm heterogeneity for rationalizing observations about increasing returns to scale

both at microgeographic and metro area level spatial scales.
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Figure 1. – Map of Downtown Toronto

Notes: Postal codes are outlined by thin red lines. Major streets are in black. All postal codes with centroids within the
indicated central 75 meter radius circle are included in the indicated example peer group area.
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Figure 2. – Sorting on Peer Group Quality
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(a) Mean Peer Log Revenue by Firm Log Revenue
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(b) Aggregate Peer Log Revenue by Firm Log revenue

Notes: Plots show local polynomial relationships between firm log revenue and mean peer log revenue in Panel A and aggregate

peer log revenue in Panel B. Shaded regions indicate 95% confidence intervals. Only firms in the primary estimation sample
are included. The sample excludes multi-location firms and those in peer group areas with one or more member postal code

with an area that is greater than π752 sq meters (0.018 sq km) and peer group areas with fewer than two high-skilled services

firms in any year 2001-2012. The sample only includes firms in the Montreal, Toronto, or Vancouver census metropolitan areas.
To make the graph easier to read, the distribution of firm log revenue on the horizontal axis is trimmed at the 1st and 99th

percentiles.
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Figure 3. – Relationships Between Treatment Size and Peer Group Composition

-1
.5

-1
-.5

0
.5

1
lo

g 
Ag

g 
Pe

er
 R

ev
en

ue
 (d

as
h)

-1
5

-1
0

-5
0

5
10

Ag
g 

Pe
er

 Q
ua

lit
y 

(s
ol

id
)

-1.5 -1 -.5 0 .5 1 1.5
Avg Peer Quality, Demeaned

Notes: This figure is constructed using data from the 2006 cross-section of the primary estimation sample. Results are

based on estimates in Table 2 column (3). Plots show local polynomial relationships between estimated average peer group
quality 1

|Mb|−1

∑
j∈Mb ,̸=i α̂j and estimated aggregate peer group quality

∑
j∈Mb ,̸=i α̂j (solid line, left axis) or log aggregate

peer revenue ln
∑

j∈Mb ,̸=i Rj (dashed line, right axis). All objects are demeaned within 500 meter radius peer group areas.

The distribution of demeaned estimated average peer group quality on the horizontal axis is trimmed at the 2.5th and 97.5th

percentiles.
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Figure 4. – Sorting into Peer Groups
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Notes: This figure is constructed using data from the 2006 cross-section of the primary estimation sample. Results are based

on estimates reported in Table 2 column (3) (α̂i) and column (6) (α̂6
i ). The solid line is the nonparametric relationship between

α̂i and 1
|Mb|−1

[
∑

j∈Mb, ̸=i α̂j −
∑

j∈MC
b

,̸=i α̂j ] in which counterfactual peer groups MC
b are determined by random assignment

of firms to peer groups within 500 meter radius areas. The long dashed line is the nonparametric relationship between α̂6
i and

1
|Mb|−1

[
∑

j∈Mb, ̸=i α̂
6
j−

∑
j∈MC

b
,̸=i α̂

6
j ] under the same random assignment scheme and after demeaning α̂6

i within local 500 meter

radius areas. The short dashed line is the nonparameteric relationship between α̂6
i and 1

|Mb|−1
[
∑

j∈Mb ,̸=i α̂
6
j −

∑
j∈MC

b
,̸=i α̂

6
j ]

in which counterfactual peer groups MC
b are determined by random assignment of firms to peer groups across all locations,

without demeaning. The distribution of demeaned α on the horizontal axis is trimmed at the 2.5th and 97.5th percentiles.
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Table 1. – Descriptive Statistics

All Industries High-Skilled Services (NAICS 5)

Multi Single Multi Single Primary
(1) (2) (3) (4) (5)

Panel A: Statistics

ln Revenue 15.06 12.05 14.50 11.60 11.93
(2.21) (1.98) (2.42) (2.03) (2.09)

ln Payroll per Worker 10.65 10.13 10.80 10.29 10.42
(0.75) (0.92) (0.87) (0.99) (0.98)

ln Employment 3.11 1.18 2.73 0.92 1.06
(1.56) (1.01) (1.77) (0.94) (1.00)

Area of Postal Code 0.17 0.11 0.05 0.09 0.006
(sq km) (12.90) (11.31) (0.87) (10.28) (0.005)

Panel B: Sample Sizes

Observations 245,500 2,645,300 78,500 1,075,700 282,000
Obs., Non-Missing Rev. 233,200 2,520,300 74,300 1,023,200 269,100
# Firms 30,500 428,400 10,600 181,500 56,000
# Peer Group-Years 128,300 843,300 47,600 501,500 42,100

Notes: Statistics are for all firms in the Montreal, Toronto, and Vancouver census metropolitan areas for the 2001-2012 period.

Panel A shows means with standard deviations in parentheses. The estimation sample in the final column excludes firms in
peer group areas with one or more member postal code with an area that is greater than π752 sq meters (0.018 sq km) and peer

group areas with fewer than two high-skilled services firms in any year 2001-2012.
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Table 3. – Identification Checks

Panel A: Using all available observations

Outcome Residual t

(1) (2) (3) (4) (5)
Avg. peer quality, t+ 1 0.0045

(0.0033)

Avg. peer quality, t+ 2 0.0032
(0.0034)

Avg. peer quality, t− 1 -0.0037
(0.0032)

Avg. peer quality, t− 2 -0.0020
(0.0033)

Avg. quality of entrants, t+ 1 0.0007
(0.0012)

Avg. quality of departures, t− 1 0.0012
(0.0010)

Residual t− 1 0.2663
(0.0017)

Observations 171,600 170,700 144,200 148,400 210,000

Panel B: Using only firms that change location between period t and t+ 1

Outcome Residual t Residual t+ 1

(1) (2) (3) (4) (5)
Avg. peer quality, next loc. t -0.0150

(0.0102)

Avg. quality of entrants, next loc. t -0.0087
(0.0063)

Avg. quality of departures, next loc. t 0.0032
(0.0078)

Avg. quality of entrants, previous loc. t+ 1 0.0016
(0.0078)

Avg. quality of departures, previous loc. t+ 1 0.0009
(0.0066)

Observations 8,500 7,200 7,000 6,600 7,400

Notes: Each column in each panel shows coefficients and standard errors from a separate regression. The dependent variable

is the residual term associated with estimates in Table 2 column (3). Panel A uses all available observations whereas Panel

B focuses on movers and only uses observations either immediately prior to a move across peer group areas (columns 1-3)
or immediately afterwards (columns 4-5). All predictor variables (except Panel A, column 5) are calculated as the mean of

estimated αj in the indicated period and peer group location. The predictor variable in Panel A, column 5 is the lagged

residual. Symmetric wild bootstrapped standard errors clustered at the peer group area level are in parentheses.
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Table 4. – Alternative Outcomes

Adj. Log
Revenue

Log Emp. Log Payroll Incl. Multi

(1) (2) (3) (4)
Avg. Peer Firm F.E. 0.0209 0.0156 0.0125 0.0187

(0.0114) (0.0107) (0.0144) (0.0073)

Agg. Peer Firm F.E. -0.0012 0.0001 0.0005 -0.0007
(0.0010) (0.0009) (0.0012) (0.0005)

Number of Peers 0.0004 -0.0002 0.0004 0.0007
(0.0007) (0.0003) (0.0004) (0.0005)

Observations 269,100 170,900 174,700 309,900
# of Peer Group-Years 42,100 36,100 36,400 45,300
# of Firms 56,000 35,400 36,000 62,700
Mean y 11.42 1.06 11.45 12.23
SD y 4.23 1.00 1.47 2.29
SD Firm F.E. 2.05 0.96 1.39 2.14
SD Avg. Peer Firm F.E. 1.15 0.47 0.71 1.18
SD Agg. Peer Firm F.E. 16.41 6.53 7.71 21.09
SD Number of Peers 19.52 19.95 19.94 23.76

Implied 90-10 Gap (LIM) 0.06 0.02 0.02 0.06

Notes: Estimates are analogous to those in Table 2 column (3) but using alternative outcome variables. Adjusted Log Revenue

used in column (1) is calculated as log revenue divided by 1+ηk
ηk(1−θk)−θk

. Details are in Appendix A.A1. “Incl. Multi” in the

final column is the same regression as in Table 2 column (3) except multi-location firms are included in the sample. For each of

these firms, all revenue is necessarily assigned to the one location reported on the firm tax filing. Symmetric wild bootstrapped
standard errors clustered at the peer group area level are in parentheses.
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Table 5. – Spatial Decay

Panel A: Other Peer Group Definitions

Peer Group Area 75m Radius 150m
Radius

200m
Radius

250m
Radius

(1) (2) (3) (4)
Avg. Peer Firm F.E. 0.0240 0.0253 0.0224 0.0233

(0.0090) (0.0106) (0.0112) (0.0109)

Agg. Peer Firm F.E. -0.0006 -0.0001 -0.0007 0.0002
(0.0007) (0.0005) (0.0005) (0.0004)

Number of Peers 0.0005 -0.0003 0.0000 -0.0001
(0.0006) (0.0003) (0.0002) (0.0002)

Observations 269,100 269,000 268,900 268,800
# of Peer Group-Years 42,100 35,900 32,700 30,200
# of Firms 56,000 55,900 55,900 55,900
SD Avg. Peer Firm F.E. 1.12 1.05 1.02 1.00
SD Agg. Peer Firm F.E. 14.27 20.20 24.12 30.21
SD Number of Peers 19.52 42.08 53.25 64.50

Implied 90-10 Gap (LIM) 0.07 0.07 0.06 0.07

Panel B: Competing Peer Groups, Using Post-Estimation Data from Main Specification

(1) (2) (3) (4)
Avg. Peer Firm F.E. (75m) 0.0222 0.0216 0.0251 0.0227

(0.0043) (0.0040) (0.0035) (0.0031)

Avg. Peer Firm F.E. (150m) 0.0051 0.0027
(0.0047) (0.0040)

Avg. Peer Firm F.E. (200m) -0.0074 -0.0014
(0.0048) (0.0035)

Avg. Peer Firm F.E. (250m) 0.0043 0.0016
(0.0041) (0.0031)

Notes: Estimates in Panel A are analogous to those in Table 2 column (3) except for the indicated peer group area definitions.
All samples exclude peer groups that include firms for which at least one contextual fixed effect required for estimation is not

separately identified from the firm fixed effect. As a result, slightly more observations are excluded when using the broader peer
group area definitions compared to the primary estimation sample in column (1). Symmetric wild bootstrapped standard errors
clustered at the peer group area level are in parentheses. Estimates in Panel B use post-estimation data from Panel A column
(1) to run regressions of log revenue (residualized from the estimated fixed effects) on average peer quality within 75, 150, 200,

and/or 250 meters. Aggregate peer quality and the number of peers within 75 meters are included as controls in all columns.
Standard errors clustered at the peer group area level are in parentheses.
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Table 7. – Aggregate Impacts of Counterfactual Firm Allocation Across Peer Groups

Randomization Type Fixed Group Size Equal Group Size

Nature of Spillovers Considered LIM LIM +
AGG

LIM LIM +
AGG

(1) (2) (3) (4)
Estimates w/ Area × Year F.E., -0.0027 -0.0019 -0.0029 -0.0060
Randomized Within Areas (0.0006) (0.0007) (0.0006) (0.0003)

Estimates w/o Area × Year F.E., -0.0023 -0.0068 -0.0027 -0.0135
Randomized Within Areas (0.0005) (0.0017) (0.0005) (0.0010)

Estimates w/o Area × Year F.E., -0.0074 -0.0218 -0.0076 -0.0264
Randomized Across All Locations (0.0008) (0.0012) (0.0010) (0.0012)

Notes: Table presents the means and standard deviations of changes in aggregate revenue that would ensue under 100
simulations of various scenarios in which sorting of firms across peer groups is eliminated. Results in the two columns under

the header “Fixed Group Size” are generated holding peer group size fixed and those under the header “Equal Group Size” are

generated given full randomization of firms across peer groups. In each column headed by LIM, counterfactual firm revenue absent
sorting is calculated adjusting for the linear-in-means component of the spillover and in each column headed by LIM+AGG,

both linear-in-means and agglomeration terms are included in the calculation. The first row uses estimates from Table 2 column

(3) and imposes demeaning and randomization across peer groups within 500 meter radius areas. The second row uses estimates
from Table 2 column (6) instead with the same demeaning and randomization procedures. The third row uses estimates from

Table 2 column (6) but demeans and randomizes across all peer groups.



LOCAL PRODUCTIVITY SPILLOVERS 49

REFERENCES

Ackerberg, Daniel A, Kevin Caves, and Garth Frazer. 2015. “Identification properties of

recent production function estimators.” Econometrica, 83(6): 2411–2451.

Ahlfeldt, Gabriel M, Stephen J Redding, Daniel M Sturm, and Nikolaus Wolf. 2015.

“The Economics of Density: Evidence from the Berlin Wall.” Econometrica, 83(6): 2127–2189.

Ahlfeldt, Gabriel M, Thilo Albers, and Kristian Behrens. 2020. “Prime locations.” CEPR

Discussion Paper 15470.

Angrist, Joshua D. 2014. “The Perils of Peer Effects.” Labour Economics, 30(C): 98–108.

Arcidiacono, Peter, Gigi Foster, Natalie Goodpaster, and Josh Kinsler. 2012. “Estimating

Spillovers Using Panel Data, with an Application to the Classroom.” Quantitative Economics,

3(3): 421–470.

Arzaghi, Mohammad, and J Vernon Henderson. 2008. “Networking Off Madison Avenue.”

Review of Economic Studies, 75(4): 1011–1038.

Atkin, David, M. Keith Chen, and Anton Popov. 2022. “The Returns to Face-to-Face

Interactions: Knowledge Spillovers in Silicon Valley.” National Bureau of Economic Research

Working Paper 30147.

Baum-Snow, Nathaniel, and Ronni Pavan. 2012. “Understanding the City Size Wage Gap.”

Review of Economic Studies, 79(1): 88–127.

Bayer, Patrick, Stephen L. Ross, and Giorgio Topa. 2008. “Place of Work and Place of Res-

idence: Informal Hiring Networks and Labor Market Outcomes.” Journal of Political Economy,

116(6): 1150–1196.

Bazzi, Samuel, Amalavoyal V. Chari, Shanthi Nataraj, and Alexander D. Rothenberg.

2017. “Identifying Productivity Spillovers Using the Structure of Production Networks.” Working

Paper.

Bernard, Andrew B, Andreas Moxnes, and Yukiko U Saito. 2019. “Production networks,

geography, and firm performance.” Journal of Political Economy, 127(2): 639–688.

Bloom, Nicholas, Mark Schankerman, and John Van Reenen. 2013. “Identifying Technol-

ogy Spillovers and Product Market Rivalry.” Econometrica, 81(4): 1347–1393.



50

Caeyers, Bet, and Marcel Fafchamps. 2020. “Exclusion Bias and the Estimation of Peer Ef-

fects.” Working Paper.

Calabrese, Stephen M, Dennis N Epple, and Richard E Romano. 2012. “Inefficiencies from

Metropolitan Political and Fiscal Decentralization: Failures of Tiebout Competition.” Review of

Economic Studies, 79(3): 1081–1111.

Combes, Pierre-Philippe, and Laurent Gobillon. 2015. “The Empirics of Agglomeration

Economies.” In Handbook of Regional and Urban Economics. Vol. 5 of Handbook of Regional and

Urban Economics, , ed. Gilles Duranton, J. Vernon Henderson and William C. Strange, Chapter

5, 247–348. Elsevier.

Combes, Pierre-Philippe, Gilles Duranton, Laurent Gobillon, Diego Puga, and
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Appendix A. The Imperfect Competition Case

This section develops structural equations that describe relationships between firm revenue or

variable factor demand and peer group composition. Using these equations, we provide structural

interpretations of empirical estimates. We study an environment in which the variable input share

and output demand elasticity are industry-specific.

A1. Setup

With market power, each firm charges a markup over marginal cost that depends on the elasticity

of demand it faces for its product. To model this phenomenon, we begin with an adapted version of

the environment considered in De Loecker (2011). In this environment, consumers have CES pref-

erences across firm-specific varieties within 2-digit industries. This yields industry-specific demand

elasticities for each variety that are fixed over time. In particular, the demand faced by firm i can

be written as

qi,b,k,t = Xk,tp
ηk
i,b,k,te

ζi,b,k,t .

In this equation, one way of interpreting the industry-time effect Xk,t is as capturing the follow-

ing combination of industry-time specific demand shocks and an average price across varieties in

industry k at time t:

Xk,t =
Qk,t

P ηk
k,t

Alternatively, we can think of Xk,t as representing a more reduced form demand shifter that is

common to all varieties in industry k at time t. Either way, ηk is the demand elasticity faced by

each firm in industry k for its product and ζi,b,k,t is an i.i.d demand shock that is uncorrelated with

TFP shocks.

Profit maximization yields the following expression for the firm-year-industry specific price:

ln pi,b,k,t =− 1

Dk
lnAi,b,k,t +

θk
Dk

lnwB(b),k,t −
θk
Dk

ln[
1 + ηk
ηk

θk]

+
1− θk
Dk

[lnXk,t + ζi,b,k,t].

(A1)

The denominator Dk = −ηk(1 − θk) + θk > 0. As ηk approaches negative infinity, ln pi,b,k,t goes

to a constant by construction and firms have no market power. Otherwise, positive productivity

shocks depress output prices. Associated negative shocks to marginal costs lead firms to increase
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output, moving further down marginal revenue and demand functions. That is, the more market

power firms have, the greater the pass-through of positive productivity shocks to price discounts.

Similarly, positive wage shocks and positive demand shocks get passed through to increased variety

prices in this environment.

By definition, lnRi,b,k,t = ln pi,b,k,t + ln qi,b,k,t = (1 + ηk) ln pi,b,k,t + lnXk,t + ζi,b,k,t. Insertion

of equation (A1) into this condition delivers the following general expression for revenue, which

matches equation (5) in the main text. This expression also holds under perfect competition, when

ηk = −∞.

lnRi,b,k,t =
1 + ηk

ηk(1− θk)− θk
lnAi,b,k,t −

θk(1 + ηk)

ηk(1− θk)− θk
lnwB(b),k,t

− θk(1 + ηk)

Dk
ln[

1 + ηk
ηk

θk] +
1

Dk
[lnXk,t + ζi,b,k,t]

(A2)

If the firm is a price taker, this expression matches equation (2) with no change in price by l’Hôpital’s

Rule. As demand for the firm’s product becomes less elastic, a given change in revenue must be

driven by a larger TFP shock because the firm is more constrained in its optimal increase in quantity.

For example, with θk = 0.7 and ηk = −2, a 10 percent positive observed revenue change would reflect

a 13 percent increase in TFP. However, with ηk = −10 instead, the associated TFP increase needed

to achieve the same change in revenue is only 4 percent. Under perfect competition, this required

TFP increase is further reduced to 3.3 percent.

A2. Derivation of an Estimating Equation

As seen in equation (A2), the pass-through of TFP shocks into revenue depends both on the

strength of industry-specific market power and the importance of endogenous variable factor ad-

justments in response to TFP shocks. Within heterogeneous peer groups, there are thus variable

revenue responses to the same TFP shock, making peer effects as described by a revenue based

estimation equation heterogeneous within peer groups. This heterogeneous response mixes the

TFP spillover parameter γA with market power and variable factor share parameters ηk and θk.

In equation (4), the structural interpretation of the firm fixed effect is determined jointly by the

firm-specific fixed effect term and the spillover term.

To see this mathematically, begin with equation (A2) and set the firm fixed effect αR
i to equal
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−1+ηk(i)
Dk(i)

αA
i . Remaining firm-specific terms in equation (4) then have the structural interpretation

γR
∑

j∈Mb,t, ̸=i

[ωij(Mb,t)α
R
j ] + εRi,b,k,t =

(1 + ηk(i))

Dk(i)
γA

∑
j∈Mb,t, ̸=i

[ωij(Mb,t)α
R
j

Dk(j)

1 + ηk(j)
]

−
(1 + ηk(i))

Dk(i)
εAi,b,k,t +

ζi,b,k,t
Dk(i)

.

From this equation, it is clear that if firm i is in the same industry as all its peers, revenue spillovers

γR directly measure TFP spillovers γA. However, if they are in different industries, the estimated

spillover in the revenue equation γR mixes information about peer group composition and variable

markups.

Our approach for recovering structural TFP spillovers is to adjust the dependent variable to

homogenize treatment effects in estimation equations with the same form as equation (4). In

particular, dividing both sides of equation (A2) by −1+ηk
Dk

yields the adjusted revenue measure

(A3) ln R̃i,b,k,t ≡ − Dk

1 + ηk
lnRi,b,k,t

for use as an outcome. Substituting equation (3) for lnAi,b,k,t, we have the following alternative

structural equation for adjusted revenue, in which the spillover parameter equals the TFP spillover

parameter γA:

ln R̃i,b,k,t = αA
i + ϕ̃B(b),k,t + γA

 ∑
j∈Mb,t,̸=i

ωij(Mb,t)α
A
j

+ ε̃i,b,k,t.(A4)

Because using adjusted revenue ln R̃i,b,k,t as the dependent variable isolates firm fixed effects as the

permanent firm-specific component of TFP αA
i , the TFP spillover parameter γA can be directly

estimated as the peer effect parameter.

The new structural interpretation of the fixed effects in equation (A4) is

ϕ̃B(b),k,t = ϕA
B(b),k,t − θk lnwB(b),t − θk ln

ηk
1 + ηk

+ θk ln θk −
1

1 + ηk
lnXk,t

and the error term in equation (A4) is

ε̃Ri,b,k,t = εAi,b,k,t −
ζi,b,k,t
1 + ηk

.
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As in the perfect competition case, the fixed effects control for location fundamentals, input costs,

and industry-time specific demand conditions.

A3. Measuring Factor Shares, Markups, and TFP

Our robustness analysis that explicitly accounts for firm-specific price endogeneity requires mea-

sures of variable factor shares θk and demand elasticities ηk for implementation, as described in

equation (A3). We calculate these objects using revenue and payments to variable and fixed inputs

as observed in the data.

Using the firm level cost minimization condition, De Loecker and Eeckhout (2018) show that

the firm level markup can be calculated as θk
Ri,b,k,t

(wL)i,b,k,t
. This relationship can be verified as being

identical for all firms in industry k in the context of the more restrictive model laid out above. In

particular, we have an industry level markup which is equal to ηk
1+ηk

by profit maximization.

In the data, we observe firm level revenue Ri,b,k,t and annual payments to labor and materials.

We infer payments to capital as rental and repair costs plus the book value of capital (net of

amortization) times a discount rate plus industry-specific depreciation rate. We set the discount

rate to be the Bank of Canada prime rate plus 0.04 minus the inflation rate. We infer payments to

real estate as building maintenance costs plus property taxes plus rent plus the value of buildings

and land (net of amortization) times a mortgage rate plus depreciation rate minus a capital gains

rate. The mortgage rate is the prime rate plus 0.02. The depreciation rate is non-zero for structures

only and is reported by Statistics Canada for each 2-digit industry. The capital gains rate uses the

CMA level Teranet residential home price index.

Using this information, we calculate the output elasticity with respect to variable factors θk,t and

the markup
ηk,t

1+ηk,t
at the 2-digit industry-year level. We calculate the output elasticity with respect

to factor f , θfk,t, by aggregating payments to factors across all firms in each 2-digit industry-year

bin, where the variable factor share θk,t is calculated as θmaterials
k,t + θlabork,t . With θk,t in hand, we

calculate the industry-year specific markup as

ηk,t
1 + ηk,t

= θk,t

∑
iRi,k,t∑

i(wL)i,k,t
.

Using this equation, we solve out for demand elasticities ηk,t and average across years to recover

calibrations of ηk. Our calibrations of θk are also averages of θk,t across years in our data.21

21We also experimented with using firm-specific markups but found them to be too noisy to be of use in estimation.
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Appendix B. Estimation Details

This appendix derives the updating rules used for αi in estimation.

B1. Case With One Peer Effect Term

We have the following generalized estimation equation which follows from equation (7):

yi,k,b,t = αi + ᾱ+ γᾱW−i
b,t + ϕB(b),k(i),t + γ

∑
j∈Mb,t\{i}

ωij(Mb,t)αj + εi,k,b,t,

where W−i
b,t =

∑
j∈Mb,t\{i} ωij(Mb,t). If W−i

b,t is a constant (as in the linear-in-means specification),

we get initial estimates of αi, γᾱW
−i
b,t + ᾱ + ϕB(b),k(i),t, and γ. If W−i

b,t is not a constant, we can

separately identify σ = γᾱ and ᾱ + ϕB(b),k(i),t. αi is then updated using the updating rule below,

derived by minimizing the associated nonlinear least square objective function.

The nonlinear least square estimator minimizes the following objective function:

∑
i∈I

∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γᾱ

∑
j∈Mb,t\{i}

ωij(Mb,t)− ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)2

For the linear-in-means specification, ωij(Mb,t) =
1

|Mb,t|−1 and for the agglomeration specification,

ωij(Mb,t) = 1.

The first-order condition with respect to αi is:

0 = −2
∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)
− 2

∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t).

Solving for αi (Step 1/3):

Tiαi =
∑
t∈Ti

(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t)

−
∑
t∈Ti

∑
j∈Mb,t\{i}

γ2ωji(Mb,t)
2αi
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Solving for αi (Step 2/3):

Tiαi +
∑
t∈Ti

∑
j∈Mb,t\{i}

γ2ωji(Mb,t)
2αi =

∑
t∈Ti

(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
γωji(Mb,t)

Solving for αi (Step 3/3):

αi =

1(
Ti + γ2

∑
t∈Ti

∑
j∈Mb,t\{i} ωji(Mb,t)2

)×
∑
t∈Ti

[(
yi,k,b,t − ᾱ− γᾱW−i

b,t − ϕB(b),k(i),t − γ
∑

j∈Mb,t\{i}

ωij(Mb,t)αj

)

+ γ
∑

j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ− γᾱW−j

b,t − ϕB(b),k(j),t − γ
∑

j′∈Mb,t\{i,j}

ωjj′(Mb,t)αj′

)
ωji(Mb,t)

]

In the linear-in-means specification with basic weights ωij(Mb,t) =
1

|Mb,t|−1 , this expression is:

αi =

1(
Ti + γ2

∑
t∈Ti

1
|Mb,t|−1

)×
∑
t∈Ti

[(
yi,k,b,t − ᾱ(1− γ)− ϕB(b),k(i),t −

γ

|Mb,t| − 1

∑
j∈Mb,t\{i}

αj

)

+
γ

|Mb,t| − 1

∑
j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ(1− γ)− ϕB(b),k(j),t −

γ

|Mb,t| − 1

∑
j′∈Mb,t\{i,j}

αj′

)]

In the agglomeration model with basic weights ωji(Mb,t) = 1, this expression is:
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αi =

1(
Ti + γ2

∑
t∈Ti

(|Mb,t| − 1)
)×

∑
t∈Ti

[(
yi,k,b,t − ᾱ(1− γ)− γᾱMb,t − ϕB(b),k(i),t − γ

∑
j∈Mb,t\{i}

αj

)

+ γ
∑

j∈Mb,t\{i}

(
yj,k,b,t − αj − ᾱ(1− γ)− γᾱMb,t − ϕB(b),k(j),t − γ

∑
j′∈Mb,t\{i,j}

αj′

)]

B2. Horse race

We carry out the analogous process for the horse race. For estimation, we replace

γAgg
∑

j∈Mb,t, ̸=i αj + σ̈(|Mb,t| − 1) in the baseline horse race estimation equation (8) with its gen-

eralized counterpart γW
∑

j∈Mb,t, ̸=i αjωij(Mb,t) +σ̈W
∑

j∈Mb,t, ̸=i ωij(Mb,t). Define two weights, one

for each element of the horse race

W−i
q,b,t =

∑
j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)

where q ∈ {m, s}. The nonlinear least square estimator minimizes the following objective function:

∑
i∈I

∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b),t

− γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)2

The first-order condition with respect to αi:

0 = −2
∑
t∈Ti

(
yi,k,b,t − αi − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b),t

− γs
∑

j∈Mb,t\{i}

ωs (k (i) , k (j) ,Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm (k (i) , k (j) ,Mb,t)αj

)
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=− 2
∑
t∈Ti

∑
j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b),t

− γs
∑

j′∈Mb,t\{j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{j}

ωm(k(j), k(j′),Mb,t),Mb,t)αj′

)

×
(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]

Solving for αi (Step 1/2):

Tiαi + αi

∑
t∈Ti

∑
j∈Mb,t\{i}

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)2
=
∑
t∈Ti

(
yi,k,b,t − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b) − γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj

− γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)

+
∑
t∈Ti

∑
j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b)

− γs
∑

j′∈Mb,t\{i,j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{i,j}

ωm(k(j), k(j′),Mb,t)αj′

)

×
(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]
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Solving for αi (Step 2/2):

αi =

1

Ti +
∑

t∈Ti

∑
j∈Mb,t\{i}

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)2×
∑
t∈Ti

[(
yi,k,b,t − ᾱ− γsᾱW

−i
s,b,t − γmᾱW−i

m,b,t − ϕk(i),B(b)

− γs
∑

j∈Mb,t\{i}

ωs(k(i), k(j),Mb,t)αj − γm
∑

j∈Mb,t\{i}

ωm(k(i), k(j),Mb,t)αj

)

+
∑

j∈Mb,t\{i}

[(
yj,k,b,t − αj − ᾱ− γsᾱW

−j
s,b,t − γmᾱW−j

m,b,t − ϕk(j),B(b)

− γs
∑

j′∈Mb,t\{i,j}

ωs(k(j), k(j
′),Mb,t)αj′ − γm

∑
j′∈Mb,t\{i,j}

ωm(k(j), k(j′),Mb,t)αj′

)
×

(
γsωs(k(j), k(i),Mb,t) + γmωm(k(j), k(i),Mb,t)

)]]
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Appendix C. Proofs of Consistency

This appendix analyzes the consistency of an estimator of spillovers between firms based on

the minimization of the squared prediction errors. The proofs shown here mimic the proof of

Theorem 1 in Arcidiacono et al. (2012) (AFGK), in particular the first four lemmas where they

show the consistency of their estimator. Throughout this section, firm i in peer group n at time t

is characterized by a fixed effect αi and a shock ϵi,t,n. We analyze:

1) The consistency of an estimator where spillovers of firm j to firm i in peer group n are weighted

by a known weight ωi,j,n;

2) The consistency of a horse race estimator where both aggregate spillovers (ωi,j,n = 1) and

linear-in-mean spillovers (ωi,j,n = 1
|Mn,t|−1 , where Mn,t denotes the set of firms in peer group

n at time t) operate simultaneously;

3) The lack of consistency and bias of the estimator when the number of groups N goes to

infinity, but the peer group has a fixed time dimension, in particular T = 2, and the shocks

ϵi,t,n are autocorrelated;

4) The consistency of the estimator when both N and T go to infinity and the shocks are

autocorrelated.

Throughout this section, we maintain most of AFGK’s assumptions:

(i) E (ϵi,t,nϵj,t,k) = 0 for all j ̸= i and n ̸= k.

(ii) E (ϵi,t,nαj) = 0 for all i, j, t, n.

(iii) E
(
α4
in

)
< ∞ for all i, n.

(iv) E (ϵi,t,n) = 0 and E
(
ϵ4i,t,n

)
< ∞ for all i, t, n.

(v) E
(
ϵ2i,t,n|n, t

)
= E

(
ϵ2j,t,n|n, t

)
for all i, j, t, n.

(vi) The parameter γ ∈ Γ where Γ is compact.

In the first two cases, as in AFGK, we also assume that E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. This

assumption is relaxed in the other two cases. Furthermore, we assume that the fixed effects {αin}

are not linear combinations of each other in i to guarantee uniqueness of the solutions, which was

an implicit assumption in AFGK.

As in AFGK, we analyze consistency using a simplified structure of peer groups with a limited

number of firms and periods (expect for Case 4). We do not expect this simplification to affect
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the general results. In the same spirit, we do not allow firm i’s outcome to be affected by other

covariates, except for peer effects. That is, we do not include industry-year or local area-year fixed

effects as in our main analysis. Again, we do not believe that the general message of this section is

affected by this choice of exposition.

Case 1 - General Weights

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

ωi,j,n,tαj + ϵi,t,n

In addition to the six assumptions listed above, we assume that E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. We

consider the following limiting case:

(a) Firms are observed for at most two periods.

(b) Each peer group has two firms in each period.

(c) Within each peer group, one firm is observed for two periods and the other firm is observed

for one period only.

The optimization problem is

min
α,γ

1

N

N∑
n=1

((y11n − α1n−γω12nα2n)
2 + (y12n − α1n − γω13nα3n)

2

+ (y21n − α2n − γω21nα1n)
2 + (y32n − α3n − γω31nα1n)

2)

where we omit the time period index in the weight given that two firms meet for only one time

period.

Following AFGK, we first concentrate out the αs. Taking the first-order conditions and solving

for the firm fixed effects (omitting the index n), we get:

α1 =((
1 + (γω13)

2
)
(1− γω21γω12) (y11 − γω12y21) +

(
1 + (γω12)

2
)
(1− γω13γω31) (y12 − γω13y32)

)
(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))
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α2 =


(
(1− γω31γω13)

2 γω12 − γω21

(
1 + (γω13)

2
)
(1− γω21γω12)

)
y11

+
(
(1− γω31γω13)

2 + (1− γω21γω12)
(
1 + (γω13)

2
))

y21

− (γω21 + γω12) (1− γω13γω31) y12 + (γω21 + γω12) (1− γω13γω31) γω13y32


(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))

α3 =


(
(1− γω21γω12)

2 γω13 − γω31

(
1 + (γω12)

2
)
(1− γω13γω31)

)
y12

+
(
(1− γω21γω12)

2 + (1− γω13γω31)
(
1 + (γω12)

2
))

y32

− (γω31 + γω13) (1− γω21γω12) y11 + (γω31 + γω13) (1− γω21γω12) γω12y21


(
(1− γω31γω13)

2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
))

Note that the above expressions simplify to the same ones as in AFGK when all weights are equal

to 1:

α1 =
(y11 − γy21) + (y12 − γy32)

2 (1− γ2)

α2 =
y21 − γ3y11 − γy12 + γ2y32

(1− γ4)

α3 =
y32 − γy11 + γ2y21 − γ3y12

(1− γ4)

After several substitutions, the original minimization problems becomes:

min
α,γ

N
N∑

n=1

((1− γω31nγω13n) (y11n − γω12ny21n)− (1− γω21nγω12n) (y12n − γω13ny32n))
2

(1− γω31nγω13n)
2
(
1 + (γω12n)

2
)
+ (1− γω21nγω12n)

2
(
1 + (γω13n)

2
)

which is the same as in AFGK when the weights are equal to 1, i.e.

min
α,γ

1

N

N∑
n=1

(y11n − γy21n − y12n + γy32n)
2

2 (1 + γ2)
.

Substituting for the true data generating process:

yi,t,n = αo
i + γ0

∑
j∈Mn,t ̸=i

ωi,j,n,tα
o
j + ϵoi,t,n
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we obtain

min
α,γ

1

N

N∑
n=1

q (yn, γ)

where (omitting the index n):

q (yn, γ) =

(
(1− γω31γω13) (α

o
1 + γ0ω12a

o
2 + ϵ◦11 − γω12 (α

o
2 + γ0ω21a

o
1 + ϵo21))

− (1− γω21γω12) (ao1 + γ0ω13ao3 + ϵ◦12 − γω13 (αo
3 + γ0ω31ao1 + ϵo32))

)2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
) .

Consider the expected value of the function q(yn, γ). Using assumptions (i), (ii), and (iv), the

expression simplifies to:

E(q(y, γ)) = σ2
ϵ

+E


(
((1− γω31γω13) (1− γω12γ0ω21)− (1− γω21γω12) (1− γω13γ0ω31))α

o
1

+ (1− γω31γω13) (γ0 − γ)ω12ao2 − (1− γω21γω12) (γ0 − γ)ω13ao3

)2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
)

 .

The first term does not depend on γ. Because the denominator of the second term is positive

and the numerator is squared, it is equal to zero when γ = γ0 while strictly positive when γ ̸= γ0.

Hence, E[q(y, γ0)] < E[q(y, γ)] for all γ ∈ Γ such that γ ̸= γ0.

As suggested in AFGK, most of the requirements to apply Theorem 12.1 in Wooldridge (2010) are

satisfied with the exception of the following: For all γ ∈ Γ, |q(γ, y)| ≤ b(y) where b is a non-negative

function such that E(b(y)) < ∞ Given that q(γ, y) is always positive we can ignore the absolute

value. Going back to the definition of q(γ, y) :

q(γ, y) =
((1− γω31γω13) (y11 − γω12y21)− (1− γω21γω12) (y12 − γω13y32))

2

(1− γω31γω13)
2
(
1 + (γω12)

2
)
+ (1− γω21γω12)

2
(
1 + (γω13)

2
)

and using the triangular inequality, we can show that q(γ, y) < 2
(
y211 + 2y221 + 2y212 + 2y232

)
. The

last step is to show that E
(
2y211n + 2y221n + 2y212n + 2y232n

)
< ∞. This follows exactly the proof in

AFGK and we omit it here. Theorem 12.1 in Wooldridge (2010) can be applied to obtain γ̂
p→ γ0.

Case 2 - Horse Race

We now consider the consistency of a horse race estimator where both aggregate spillovers (ωa
i,j,n =

1) and linear-in-mean spillovers (ωb
i,j,n = 1

|Mn,t|−1 , where Mn,t denotes the set of firms in peer group

n at time t) operate simultaneously. In this case, outcome yi,t,n of firm i in peer group n at time t
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is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αjn + ρ
∑

j∈Mn,t ̸=i

αjn

|Mn,t| − 1
+ ϵi,t,n.

We consider a situation where each peer group has the following composition:

(a) Firm 0n is observed for 3 periods.

(b) Firm 1n is observed only in the first period.

(c) Firm 2n is observed only in the second period.

(d) Firm 3n and 4n are observed only in the third period.

The optimization problem is

min
α,γ,ρ

1

N

N∑
i=1

(
ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ222n + ϵ233n + ϵ243n

)
where

ϵ01n = y01n − α0n − (γ + ρ)α1n

ϵ02n = y02n − α0n − (γ + ρ)α2n

ϵ33n = y03n − α0n −
(
γ +

ρ

2

)
(α3n + α4n)

ϵ11n = y11n − α1n − (γ + ρ)α0n

ϵ22n = y22n − α2n − (γ + ρ)α0n

ϵ33n = y33n − α3n −
(
γ +

ρ

2

)
(α0n + α4n)

ϵ43n = y43n − α4n −
(
γ +

ρ

2

)
(α0n + α3n) .

We first concentrate out α1, α2, α3, and α4 for all groups. From the first-order conditions, after

several substitutions, we are able to rewrite the argument of the summation above as:

ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ212n + ϵ233n + ϵ243n

=

(
y01n − (γ + ρ)y11n −

(
1− (γ + ρ)2

)
α0n

)2
+
(
y02n − (γ + ρ)y22n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+

((
γ + ρ

2

)
y33n +

(
γ + ρ

2

)
y43n −

(
1 +

(
γ + ρ

2

))
y03n +

(
1−

(
γ + ρ

2

)) (
1 + 2

(
γ + ρ

2

))
α0n

)2(
3
(
γ + ρ

2

)2
+ 2

(
γ + ρ

2

)
+ 1
)

Instead of concentrating out α0n, we work directly with the minimization of the expected criterion
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function. To do so, we substitute for the true data generating process

y01n = αo
0n + (γ0 + ρ0)α

o
1n + ϵo01n

y02n = αo
0n + (γ0 + ρ0)α

o
2n + ϵo02n

y03n = αo
0n +

(
γ0 +

ρ0
2

)
(αo

3n + αo
4n) + ϵo03n

y11n = αo
1n + (γ0 + ρ0)α

o
0n + ϵo11n

y22n = αo
2n + (γ0 + ρ0)α

o
0n + ϵo22n

y33n = αo
3n +

(
γ0 +

ρ0
2

)
(αo

0n + αo
4n) + ϵo33n

y43n = αo
4n +

(
γ0 +

ρ0
2

)
(αo

0n + αo
3n) + ϵo43n

The expected value of that object can then be written as

E

(
ϵ201n + ϵ202n + ϵ203n + ϵ211n + ϵ222n + ϵ233n + ϵ243n

)
= E

(
((γ0 + ρ0)− (γ + ρ))αo

1n + (1− (γ + ρ) (γ0 + ρ0))α
o
0n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+E

(
((γ0 + ρ0)− (γ + ρ))αo

2n + (1− (γ + ρ) (γ0 + ρ0))α
o
0n −

(
1− (γ + ρ)2

)
α0n

)2
1 + (γ + ρ)2

+E

(((
γ + ρ

2

) (
1 +

(
γ0 +

ρ0
2

))
−
(
γ0 +

ρ0
2

) (
1 +

(
γ + ρ

2

)))
(αo

3n + αo
4n)

+
(
1 +

(
γ + ρ

2

))
(α0n − αo

0n) + 2
(
γ + ρ

2

) ((
γ0 +

ρ0
2

)
αo
0n −

(
γ + ρ

2

)
α0n

))2

2
(
γ + ρ

2

)2
+
(
1 +

(
γ + ρ

2

))2
+ 3σ2

ϵn

using assumptions (i), (ii), and (v) and assuming E (ϵi,t,nϵj,s,k) = 0 for t ̸= s. Given that the

first three terms on the right hand side are non-negative, the minimum is attained at 3σ2
en when

α0n = αo
0n, γ = γ0, and ρ = ρo. To complete the proof of consistency, as in the previous case, one

has to show that the original object can be bounded for all possible γs. We omit this step which

can be achieved in a similar fashion to the previous case.

Case 3 - Autocorrelated Errors

As in the first case, we assume that peer groups have a simplified composition:

(a) We observe firms for at most two periods.

(b) Each peer group has two firms in each period.
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(c) Within each peer group, one firm is observed for two periods and the other firm is observed

for one period only.

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αj + ϵitn

where we assume ϵi,t,n = ρϵi,t−1,n + ui,t,n. The optimization problem is

min
α,γ

1

N

N∑
n=1

((y11n − α1n − γα2n)
2 + (y12n − α1n − γα3n)

2

+ (y21n − α2n − γα1n)
2 + (y32n − α3n − γα1n)

2).

As in the first case we concentrate out the αs. From the first-order conditions, we find that:

α1n =
(y11n − γy21n) + (y12n − γy32n)

2 (1− γ2)

α2n =
y21n − γ3y11n − γy12n + γ2y32n

(1− γ4)

α3n =
y32n − γy11n + γ2y21n − γ3y12n

(1− γ4)

Substituting, we get:

min
α,γ

1

N

N∑
n=1

(y11n − γy21n − y12n + γy32n)
2

2 (1 + γ2)

Substituting y with the true data generating process yields

min
α,γ

1

N

N∑
n=1

((γ0 − γ)αo
2n − (γ0 − γ) ao3n + ϵo11 − ϵo12n + γϵo32n − γϵo21n)

2

2 (1 + γ2)
.
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Consider the expected value of the argument within the summation

E

(
((γ0 − γ)αo

2 − (γ0 − γ)αo
3 + ϵo11 − ϵo12 + γϵo32 − γϵo21)

2

2 (1 + γ2)

)

= E

(
(γ0 − γ)2 (α20n − α30n)

2

2 (1 + γ2)

)

+E

(
(ϵ11n − ϵ12n + γϵ32n − γϵ21n)

2

2 (1 + γ2)

)

+E

(
2 (γ0 − γ) (α20n − α30n) (ϵ11n − ϵ12n + γϵ32n − γϵ21n)

2 (1 + γ2)

)
.

All three terms on the right hand side are non-negative. The third term is equal to zero because of

assumption (ii). Assuming that σαα is the covariance between α20n and α30n and that the variance

of α is the same across different αs, the whole expression becomes:

(γ0 − γ)2

(1 + γ2)

(
σ2
α − σαα

)
+ σ2

ϵ −
ρσ2

ϵ

(1 + γ2)

using assumptions (i), (iv), and (v). If ρ = 0, this expression is minimized at γ = γ0. If ρ ̸= 0,

minimizing the above leads to the following expression:

(γ0 − γ) (1 + γγ0) =
γρσ2

ϵ

(σ2
α − σαα)

Assuming that γ0 and ρ are positive, γ cannot be equal to γ0 because the left hand side would be 0

while the right hand side would be strictly positive. The optimal solution to the limiting objective

function is not γ0, and hence the estimator of γ would be asymptotically biased.

Case 4 - T → ∞

Here, we show that the bias in Case 3 disappears if we allow for T to diverge as well. As in Case

3, we assume (in addition to the standard six assumptions) that

ϵi,t,n = ρϵi,t−1,n + ui,t,n.

We consider the following simplified structure of peer groups:

(a) Each peer group has two firms in each period.

(b) Within each group, one firm is observed for T periods and the other firm is observed for one
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period only.

Outcome yi,t,n of firm i in peer group n at time t is:

yi,t,n = αi + γ
∑

j∈Mn,t ̸=i

αj + ϵi,t,n

which is consistent with either linear-in-means or aggregate spillovers. To simplify notation, the

staying firm is characterized by the indices (0, t) and the one-period firms by (t, t) so the time t

identifies those firms. Dropping the peer group index n, the optimization problem is:

min
a,γ

1

N

N∑
n=1

1

T

(
T∑
t=1

(y0t − α0 − γαt)
2 + (ytt − αt − γα0)

2

)

First we concentrate out the fixed effects for the one-period firms. From the first-order conditions,

we have:

αt =
γ (y0t − α0) + (ytt − γα0)

1 + γ2

Substituting back into the problem:

min
a,γ

1

N

N∑
n=1

1

T

(
T∑
t=1

((y0t − α0)− γ (ytt − γα0))
2

1 + γ2

)
.

The first-order condition for α0 leads to

α0 =

∑T
t=1 (y0t − γytt)

T (1− γ2)
.

Substituting back in yields

min
γ

1

N

N∑
n=1

1

T

 T∑
t=1

((
y0t −

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

)
− γ

(
ytt − γ

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

))2
1 + γ2

 .

Next, we substitute in the true data generating process:

y0t = αo
0 + γ0α

o
t + ϵo0t

ytt = αo
t + γ0α

o
0 + ϵott
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to obtain

min
γ

qN,T (γ, y) ≡

min
γ

1

N

N∑
n=1

1

T

 T∑
t=1

(
(γ0 − γ)

(
αo
t −

∑T
τ=1

αo
τ
T

)
+ ϵo0t − γϵott −

∑T
τ=1

ϵo0τ−γϵoττ
T

)2
1 + γ2

 .

We consider the performance of the estimator under a sequential asymptotic framework where we

first let N → ∞, and then let T → ∞ (i.e. (N,T )
seq→ ∞).

Define the limiting objective function as

q(γ, y) ≡ lim
T→∞

plim
N→∞

qN,T (γ, y)

and we first consider plimN→∞ qN,T (γ, y):

E

 1

T

 T∑
t=1

(
(γ0 − γ)

(
αo
t −

∑T
τ=1

αo
τ
T

)
+ ϵo0t − γϵott −

∑T
τ=1

ϵo0τ−γϵoττ
T

)2
1 + γ2




=
1

T

1

1 + γ2

T∑
t=1

(γ0 − γ)2

1 + γ2
E

(
αo
t −

T∑
τ=1

αo
τ

T

)2

+
1

T

1

1 + γ2

T∑
t=1

E

(
ϵo0t − γϵott −

T∑
τ=1

ϵo0τ − γϵoττ
T

)2

,

where the cross-products are 0 by assumption (ii). Notice that both terms are squared and non-

negative. The first term is minimized at 0 when γ = γ0. The expectation in the second term can
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be expressed as

E

[(
ϵo0t − γϵott −

T∑
τ=1

ϵo0τ − γϵoττ
T

)]2

= E

(1− 1

T

)
ϵ0t − γ

(
1− 1

T

)
ϵtt −

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

2
= E

[(
1− 1

T

)2

ϵ20t + γ2
(
1− 1

T

)2

ϵ2tt +
1

T 2

( T∑
τ=1̸=t

ϵ0τ − γϵττ

)2

− 2γ

(
1− 1

T

)2

ϵ0tϵtt

+ 2γ

(
1− 1

T

)
ϵtt

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

− 2

(
1− 1

T

)
ϵ0t

T∑
τ=1̸=t

ϵ0τ − γϵττ
T

]

= (1 + γ2)

(
1− 1

T

)2

σ2
ϵ +

2

T 2

( T∑
τ=1̸=t

σ2
ϵ + 2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

)

+
2γ2

T 2

( T∑
τ=1̸=t

σ2
ϵ + 2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵττ ϵττ ′ )

)
− 2

T

(
1− 1

T

) T∑
τ=1̸=t

E(ϵ0tϵ0τ )

Note that

∣∣∣∣ T∑
τ=1̸=t

E(ϵ0tϵ0τ )

∣∣∣∣ ≤ ∣∣∣∣ T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

∣∣∣∣ ≤ 2
T−1∑
k=1

|ρkσ2
ϵ | ≤ 2σ2

ϵ

1− |ρ|T

1− |ρ|
= O(1),

even as T → ∞ since |ρ| < 1. The same can be said for the covariances of ϵττ since they are

equivalent to that of ϵ0τ .

We can thus show that the whole second term can be written as

(
T − 1

T

)2

σ2
ϵ +

2

T 2

( T∑
τ=1̸=t

σ2
ϵ +2

T∑
τ,τ ′=1̸=t,τ ̸=τ ′

E(ϵ0τ ϵ0τ ′ )

)
− 2

T 2(1 + γ2)

(
1− 1

T

) T∑
t=1

T∑
τ=1̸=t

E(ϵ0tϵ0τ ).

Since the final term above is a function of γ, it is not guaranteed that setting γ = γ0 minimizes

the objective function and hence may be biased as shown in Case 3. However, when we take the

limit as T → ∞, this term is O(1/T ) and hence goes to 0. In addition, the second term is O(1/T )

and also approaches 0, and thus the whole term reduces to σ2
ϵ in the limit.

This means that, in the limit as T → ∞, we only have to consider the first term of

plimN→∞ qN,T (γ, y) in optimizing γ, and hence the solution is γ = γ0.

To have convergence for our estimator, we require uniform convergence of the objective function

qN,T (γ, y) to q(γ, y). As in the previous case (and as in AFGK), we only need to show that for all
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γ ∈ Γ, ∣∣∣∣∣∣∣
1

T

T∑
t=1

((
y0t −

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

)
− γ

(
ytt − γ

∑T
τ=1(y0τ−γyττ )

T (1−γ2)

))2
1 + γ2

∣∣∣∣∣∣∣ ≤ b(γ)

where b is a non-negative function such that E (b (γ)) < ∞. This can be shown using repeatedly

the triangular inequality.
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Appendix D. Details about Connectivity Weights

This section provides details about the connectivity weights used in the empirical analysis.

Input-output weights allow for examination of the extent to which spillovers operate through the

flow of goods. Stronger input-output linkages may facilitate knowledge transfer about production

practices or demand conditions. We build input-output weights using the Basic Price version of the

4-digit NAICS 2015 Statistics Canada input-output table. As in Ellison, Glaeser and Kerr (2010),

underlying continuous weights are the maximum of upstream and downstream input and output

shares:

wIOC
ij = max[Inputk(i),k(j),Inputk(j),k(i),Outputk(i),k(j),Outputk(j),k(i)].

We also construct separate weights using each component of wIOC
ij . These produce similar results.

Occupational similarity weights allow for examination the extent to which knowledge transfer

that is specific to particular occupations is an important driver of firm spillovers.22 We view

results using these weights as informative about the extent to which industries with more similar

occupational mixes have more productive knowledge flows. Closer occupational similarity with peers

could mean that workers learn more about how to effectively perform their core occupational tasks,

where such knowledge transfer may happen through chance encounters (Atkin, Chen and Popov,

2022). We build occupational similarity measures using the 2002 US National Industry Occupation

Employment Matrix, which is built using data from the Occupational Employment Statistics survey

conducted by the Bureau of Labor Statistics. For each industry, it gives the share of employees

in each four-digit occupation. Similar to Ellison, Glaeser and Kerr (2010), we define occupational

similarity weights as:

wOCCSIM
ij = max[Corr(Occ. Sharek(i),Occ. Sharek(j)), 0].

Worker flows weights similarly capture the extent to which workers in firm i’s industry are likely

to have either direct experience working in peers’ industries or to use a similar set of skills in their

jobs. Seeing a high rate of worker flows from peers’ industries is an indicator of closer connections

in one or both of these dimensions. We build information on the prevalence of inter-industry worker

flows by using the employer-employee match component of our data set. Using all employees in

22Ellison, Glaeser and Kerr (2010) interpret greater coagglomeration of firms in occupationally similar industries in local
labor markets as reflecting labor market pooling. Their interpretation is likely to be less relevant at the small spatial scale of
spillovers that we examine in this paper.



LOCAL PRODUCTIVITY SPILLOVERS 75

Canada earning at least CAD 5,000 that had different employers in 2001 and 2002, we calculate the

share of worker flows from firms in each industry k′ that go to each other industry k, adjusting for

the share of industry k′ in total employment. In particular,

wWFLOW
ij =

fraction of industry job changers to industry k(i) that are from k′(j)

fraction of total job changers from industry k′(j)
.

The denominator accounts for the fact that random choices out of industries with greater worker

shares and/or mobility rates would mechanically generate greater flows to all other industries.

Therefore, wWFLOW
ij measures the extent to which worker flows from industry k′(j) to industry k(i)

are greater or less than expected relative to random destination industry choices, taking transitions

out of industry k′(j) as given.

Finally, similar to Greenstone, Hornbeck and Moretti (2010), we also test whether firms in the

same 2-digit industry generate differential spillovers to those in other 2-digit industries. In this case,

wSAME
ij = 1 if k(i) = k(j) at the 2-digit NAICS level and 0 otherwise. Rather than using terciles,

we implement this weight in the empirical work by examining impacts of having a higher fraction

of peers in the same industry.
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Appendix E. Supplemental Figures and Tables
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Figure E2. – Changes in Log Revenue Induced by Firm Entry
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(a) Negative shock: firm entry causes a change in average peer quality below 10th percentile
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(b) Positive shock: firm entry causes a change in average peer quality above 90th percentile

Notes: Figures show coefficients and confidence intervals from event-study regressions. The dependent variable is firm log

revenue residualized for estimated fixed effects in Table 2 Column (3). Dots are coefficients on yearly event-time dummies,
normalizing the coefficient on event-time −1 to 0. Horizontal solid lines are coefficients on biyearly event-time dummies,

normalizing the coefficient on pooled event-time −1 and −2 to 0. Whiskers and dashed lines show associated 90% confidence
intervals calculated using standard errors clustered at the event level. Estimation samples only include incumbent firms in peer

groups in which all incumbents experience a change in average peer quality that is below the 10th percentile (Panel A) or above
the 90th percentile (Panel B) of the change in average peer quality distribution across all firm-year observations in the primary
estimation sample. Only such events that are induced by the arrival of new firms in a peer group location with no other changes
in peer composition up to two years prior and one year after the event are included. Panel A has 93 events, 220 incumbents,

and 2200 observations. Panel B has 25 events, 60 incumbents, and 560 observations.
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Table E1. – Coefficient Stability Around Large Events

Event time t− 2 t− 1 t t+ 1 t+ 2

(1) (2) (3) (4) (5)
Change in average peer quality < 10th percentile

Avg. Peer Firm F.E. 0.0214 0.0250 0.0215 0.0367 0.0107
(0.0063) (0.0057) (0.0060) (0.0068) (0.0063)

X̄ 0.06 0.17 -0.56 -0.39 -0.30
Number of Obs. 16,100 19,600 19,500 16,300 12,700

Change in average peer quality < 25th percentile
Avg. Peer Firm F.E. 0.0262 0.0228 0.0167 0.0236 0.0158

(0.0048) (0.0042) (0.0043) (0.0055) (0.0050)

X̄ 0.05 0.13 -0.30 -0.19 -0.14
Number of Obs. 36,700 44,800 44,500 36,900 28,200

Change in average peer quality > 75th percentile
Avg. Peer Firm F.E. 0.0243 0.0241 0.0162 0.0225 0.0196

(0.0047) (0.0042) (0.0037) (0.0044) (0.0048)

X̄ -0.30 -0.33 0.16 0.16 0.14
Number of Obs. 40,400 49,200 49,100 40,300 30,200

Change in average peer quality > 90th percentile
Avg. Peer Firm F.E. 0.0206 0.0272 0.0085 0.0170 0.0168

(0.0075) (0.0069) (0.0075) (0.0063) (0.0071)

X̄ -0.54 -0.63 0.19 0.18 0.13
Number of Obs. 16,900 20,600 20,500 16,900 12,700

Notes: Each entry is from a separate regression analogous to that in Table 2 Column (3) but using post-estimation data and
different sub-samples. All firms exposed to changes in average peer quality of the amount indicated in each panel are assigned

an event year. Regressions of firm log revenue residualized for estimated fixed effects in Table 2 Column (3) on average peer

quality, aggregate peer quality, and number of peers are run separately by event time. X̄ is the average of average peer quality
in each estimation sample. Standard errors are clustered by peer group area.
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Table E2. – More Information About Peer Groups

Peer Group Area Radius

75m 150m 200m 250m
Panel A: Average and SD Across Firm-Years

# of Peers 15.95 28.26 36.34 45.13
(19.55) (42.15) (53.43) (64.72)

Area (sq. km) 0.043 0.100 0.155 0.216
(0.115) (0.216) (0.340) (0.403)

Panel B: Average and SD Across Firms

# of Peer Groups Experienced 1.45 1.44 1.44 1.43
(0.72) (0.71) (0.71) (0.70)

Notes: Averages and standard deviations (in parentheses) are for single-location high-skilled services firms in the primary
estimation sample. The sample excludes firms in peer group areas with one or more member postal code with an area that

is greater than π752sq meters (0.018 sq km) and peer group areas with fewer than two high-skilled services firms in any year

2001-2012. The sample only includes firms in the Montreal, Toronto, or Vancouver census metropolitan areas. Statistics in
Panel A are calculated using all firm-year observations. Statistics in Panel B are calculated using one observation per firm.



LOCAL PRODUCTIVITY SPILLOVERS 81

Table E3. – Aggregate Impacts of Counterfactual Firm Allocation Across Peer Groups, Het.
Treatment

Randomization Type Fixed Group Size Equal Group Size

Nature of Spillovers Considered LIM +
HET

+ AGG LIM +
HET

+ AGG

(1) (2) (3) (4)
Estimates w/ Area × Year F.E., -0.0034 -0.0029 -0.0037 -0.0071
Randomized Within Areas (0.0006) (0.0008) (0.0006) (0.0004)

Estimates w/o Area × Year F.E., -0.0129 -0.0170 -0.0134 -0.0238
Randomized Within Areas (0.0007) (0.0016) (0.0006) (0.0011)

Estimates w/o Area × Year F.E., -0.0094 -0.0231 -0.0093 -0.0271
Randomized Across All Locations (0.0013) (0.0015) (0.0013) (0.0015)

Notes: Table presents the means and standard deviations of changes in aggregate revenue that would ensue under 100

simulations of various scenarios in which sorting of firms across peer groups is eliminated. Results in the two columns under
the header “Fixed Group Size” are generated holding peer group size fixed and those under the header “Equal Group Size” are

generated given full randomization of firms across peer groups. In each column headed by LIM + HET, counterfactual firm

revenue absent sorting is calculated adjusting for the linear-in-means component of the spillover as well as the fraction of peers
in the top tercile of the local 500-meter radius area’s firm quality distribution, using coefficients from Table 6, column 6. In

each column headed by +AGG, the same two terms plus the agglomeration term are included in the calculation, again using

coefficients from Table 6, column 6. The first row uses fixed effects estimates from Table 2 column (3) and imposes demeaning
and randomization across peer groups within 500-meter radius areas. The second row uses fixed effects estimates from Table

2 column (6) instead with the same demeaning and randomization procedures. The third row uses fixed effects estimates from

Table 2 column (6) but demeans and randomizes across all peer groups.


